### Simple Data Driven Feedback Decision Rules:

From \$1million to \$5000 Harvest Strategies

Jeremy Prince

Exploring Tools for Improving Management of Data Poor Stocks Workshop

23-24 February 2011

#### The Solution?

Many Micro-stocks & Fishers - Local Experts & Scientific Fishing



#### The Solution?

Many Micro-stocks & Fishers - Local Experts & Scientific Fishing



#### Outline

#### **Retooling the Mindset**

Fisheries as Carpets

#### From \$1 million to \$100,000 Harvest Strategies

- Spawning Potential Ratio (SPR)
- Abundance weighted SPR
- Empirical SPR Decision Tree

#### From \$100,000 to \$5,000 Harvest Strategies

• Empirically estimating size based SPR reference points

© Geoff Jones 2009 barraimaging.com.au



#### **Area of the Fishery**



#### **Unit Stock Model**



#### **Unit Stock Model**



Locally Recruiting variable populations within meta-populations











Hotspot / Upwelling



Port

#### **Serial Depletion**

Hotspot / Upwelling



**Serial Depletion** 

Hotspot / Upwelling



#### **Basic Premises:**

- Lack of sophisticated analysis is not the problem, rather it is the generally the lack of meaningful data with sufficient spatial resolution.
- Much of our failure in management and assessment is due to our need and inability to account for complex stock structure (i.e. the 'unit stock' assumption)
- Stock structure is too complex & expensive to study universally across all marine resources and so (outside our need for pure research on the topic) not a cost-effective approach to improving assessment and management.

#### **Technical Solution:**

- 1. Manage all component parts of populations to preserve 'conservative' levels of spawning (SPR) to negate sink / source issues.
- 2. As a default treat all meta-populations as potential sources.
- 3. Use simple local harvest strategy to match size and cpue with SPR targets using SPR decision tree to involve local fishing communities in incremental change.
- 4. Set up local fishing communities to collect spatially explicit size and catch rate data.

### Fisheries as Carpets

Balancing Local Fishing Pressure

To maintain:

Local Spawning Biomass (SPR) targets

#### Spawning Potential Ratio (SPR)

Also known as: Eggs per Recruit, Spawning per Recruit, Proportion Lifetime Egg Production

**Definition:** Proportion of unfished spawning allowed by harvest policy (Walters & Martell 2004)

Fishing Intensity (F) based harvest strategy rather than Biomass (B) based harvest strategy.

Mace and Sissenwine (1993) – Review and meta-analysis of generic SPR reference points for teleosts.

Recognized in International & US Fisheries Law (Restrepo 1998)

Abundance weighted SPR (Mace et. al. 1996)



#### From \$1 million ....



.... to \$100,000 Harvest Strategies



**CPUErecruits** 

# Step 1 – Level 1 Evaluates CPUEprime Relative to SPR CPUE target And Slope to CPUE Target

## Scale-less Assessment Conditioned to SPR targets Applies Cohort Analysis Logic



#### **Provides Initial estimate of Incremental Change**

Prince et al. 2011. A simple cost-effective and scale-less empirical approach to harvest Strategies. ICES Journal of Marine Science In Press. May 2011.



Step 2 – Lower Levels

Evaluate Size Structure
Relative to SPR size target
Modify Initial estimate of

#### **Iterative Assessment**



Incremental Change – Iterative Process stabilises size & cpue at SPR targets



#### Courtesy N. Dowling



No - Reduce RBC















rel CPUEold

level at MSY

level at SPR<sub>40</sub> (decision tree target)

level at SPR<sub>20</sub> (decision tree limit)

50% *CPUEprime*<sub>0</sub> (simple decision rule target)

linear trend (showing slope) over last 5 years



Yes - No Change No - Reduce RBC B. SPR Declining Effort Creep and/or Stock Increasing Has Recruitment been high? Yes - No Change No - Reduce RBC

C. Not Possible

D. SPR decreasing Effort Creep or Recruitment Increasing Is Recruitment high? Yes - No Change No - Reduce RBC

- No Change
- B. SPR Declining Effort Creep Are Recruits Declining? Yes - 2x Reduce RBC No - Reduce RBC
- C. Recruitment decline or transition Are Recruits Declining?

Yes - Reduce RBC No - No Change

D. SPR Declining Effort Creep and/or Recruitment declining Are Recruits Declining? Yes - 2x Reduce RBC

No - Reduce RBC

2x Reduce RBC

B. Not Possible

C. Failing Recruitment 2x Reduce RBC

D. General Stock decline 3 x Reduce RBC













level at SPR<sub>40</sub> (decision tree target)

level at SPR<sub>20</sub> (decision tree limit)

50% *CPUEprime*<sub>0</sub> (simple decision rule target)

linear trend (showing slope) over last 5 years







- Yes No Change No - Reduce RBC
- B. SPR Declining Effort Creep and/or Stock Increasing Has Recruitment been high? Yes - No Change No - Reduce RBC
- C. Not Possible
- D. SPR decreasing Effort Creep or Recruitment Increasing Is Recruitment high? Yes - No Change No - Reduce RBC

- No Change
- B. SPR Declining Effort Creep Are Recruits Declining? Yes - 2x Reduce RBC No - Reduce RBC
- C. Recruitment decline or transition
  - Are Recruits Declining? Yes - Reduce RBC No - No Change
- D. SPR Declining Effort Creep and/or Recruitment declining Are Recruits Declining? Yes - 2x Reduce RBC

No - Reduce RBC

- B. Not Possible
- C. Failing Recruitment 2x Reduce RBC
- D. General Stock decline 3 x Reduce RBC





**RBC** 

Catch

15

year

20

25











Yes - No Change

No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



C. Recruitment decline or transition

Are Recruits Declining?

D. SPR Declining Effort Creep

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RRC

C. Failing Recruitment

2x Reduce RBC

D. General Stock decline

3 x Reduce RBC

R not declining



10

5

CatchQuota

level at SPR<sub>40</sub> (decision tree target)

level at SPR<sub>20</sub> (decision tree limit)

50% *CPUEprime*<sub>0</sub> (simple decision rule target)

linear trend (showing slope) over last 5 years















No - Reduce RBC

SPR decreasing Effort Creep

or Recruitment Increasing

Is Recruitment high?

Yes - No Change

No - Reduce RBC

C. Not Possible



years



Are Recruits Declining?

D. SPR Declining Effort Creep

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change

2x Reduce RBC

D. General Stock decline

3 x Reduce RBC

R high





linear trend (showing slope) over last 5

years





No - Reduce RBC

SPR decreasing Effort Creep

or Recruitment Increasing

Is Recruitment high?

Yes - No Change

No - Reduce RBC

C. Not Possible



Are Recruits Declining?

D. SPR Declining Effort Creep

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change

2x Reduce RBC

D. General Stock decline

3 x Reduce RBC

R high













level at SPR<sub>40</sub> (decision tree target)

level at SPR<sub>20</sub> (decision tree limit)

50% *CPUEprime*<sub>0</sub> (simple decision rule target)

linear trend (showing slope) over last 5 years







J. SPR decreasing Effort Creep or Recruitment Increasing Is Recruitment high? Yes - No Change No - Reduce RBC

Yes - No Change

No - Reduce RBC

C. Not Possible

Yes - Reduce RBC No - No Change D. SPR Declining Effort Creep and/or Recruitment declining Are Recruits Declining? Yes - 2x Reduce RBC

C. Recruitment decline or transition

Are Recruits Declining?

No - Reduce RBC

2x Reduce RBC

C. Failing Recruitment

cruitment declining 3 x Reduce RBC cruits Declining?

R not high













No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



Are Recruits Declining?

D. SPR Declining Effort Creep

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RRC

2x Reduce RBC

D. General Stock decline

3 x Reduce RBC

R not declining



5

10

15

year

20

25

level at SPR<sub>40</sub> (decision tree target)

level at SPR<sub>20</sub> (decision tree limit)

50% *CPUEprime*<sub>0</sub> (simple decision rule target)

linear trend (showing slope) over last 5 years





**RBC** 

Catch

15

year

20











Has Recruitment been high?

Yes - No Change

No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



C. Recruit

Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change
D. SPR Declining Effort Creep

ne or transition

C. Failing Recruitment

2x Reduce RBC

D. General Stock decline

3 x Reduce RBC

R not declining



10

CatchQuota

0

level at SPR<sub>40</sub> (decision tree target)

level at SPR<sub>20</sub> (decision tree limit)

50% *CPUEprime*<sub>0</sub> (simple decision rule target)

linear trend (showing slope) over last 5 years









or Recruitment Increasing

Is Recruitment high?

Yes - No Change

No - Reduce RBC



and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

D. General Stock decline









Yes - No Change

No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



C. Recruitment decline or transition

Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change
D. SPR Declining Effort Creep

C. Failing Recruitment

2x Reduce RBC

D. General Stock decline









Yes - No Change

No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



C. Recruitment decline or transition

Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change
D. SPR Declining Effort Creep

C. Failing Recruitment

2x Reduce RBC

D. General Stock decline









No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change
D. SPR Declining Effort Creep

2x Reduce RBC

D. General Stock decline









No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change
D. SPR Declining Effort Creep

2x Reduce RBC

D. General Stock decline









No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change
D. SPR Declining Effort Creep

2x Reduce RBC

D. General Stock decline









or Recruitment Increasing

Is Recruitment high?

Yes - No Change

No - Reduce RBC



and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC









No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



C. Recruitment decline or transition

Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change
D. SPR Declining Effort Creep

C. Failing Recruitment

2x Reduce RBC

D. General Stock decline









No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



C. Recruitment decline or transition

Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change
D. SPR Declining Effort Creep

C. Failing Recruitment

2x Reduce RBC

D. General Stock decline









Is Recruitment high?

Yes - No Change

No - Reduce RBC



and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC









No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



C. Recruitment decline or transition

Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change
D. SPR Declining Effort Creep

C. Failing Recruitment

2x Reduce RBC

D. General Stock decline











Has Recruitment been high? Yes - No Change No - Reduce RBC C. Not Possible

D. SPR decreasing Effort Creep or Recruitment Increasing Is Recruitment high? Yes - No Change No - Reduce RBC

No - Reduce RBC

C. Recruitment decline or transition Are Recruits Declining? Yes - Reduce RBC No - No Change

D. SPR Declining Effort Creep and/or Recruitment declining Are Recruits Declining? Yes - 2x Reduce RBC

No - Reduce RBC

C. Failing Recruitment 2x Reduce RBC

D. General Stock decline 3 x Reduce RBC









No - Reduce RBC

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing

C. Not Possible



C. Recruitment decline or transition

Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change
D. SPR Declining Effort Creep

C. Failing Recruitment

2x Reduce RBC

D. General Stock decline









C. Not Possible

D. SPR decreasing Effort Creep

Is Recruitment high?

Yes - No Change

No - Reduce RBC

or Recruitment Increasing



Are Recruits Declining?

and/or Recruitment declining

Are Recruits Declining?

Yes - 2x Reduce RBC

No - Reduce RBC

Yes - Reduce RBC

No - No Change D. SPR Declining Effort Creep 2x Reduce RBC

D. General Stock decline









No - Reduce RBC

Is Recruitment high?

Yes - No Change

No - Reduce RBC

C. Not Possible



- C. Recruitment decline or transition Are Recruits Declining? Yes - Reduce RRC D. SPR Declining Effort Creep D. SPR decreasing Effort Creep or Recruitment Increasing
  - and/or Recruitment declining Are Recruits Declining? Yes - 2x Reduce RBC No - Reduce RBC
- D. General Stock decline 3 x Reduce RBC

C. Failing Recruitment

2x Reduce RBC

R not declining















CatchQuota

level at SPR<sub>40</sub> (decision tree target)

level at SPR<sub>20</sub> (decision tree limit)

50% *CPUEprime*<sub>0</sub> (simple decision rule target)

linear trend (showing slope) over last 5 years







- Has Recruitment been high? Yes - No Change No - Reduce RBC
- B. SPR Declining Effort Creep and/or Stock Increasing Has Recruitment been high? Yes - No Change No - Reduce RBC
- C. Not Possible
- D. SPR decreasing Effort Creep or Recruitment Increasing Is Recruitment high? Yes - No Change No - Reduce RBC

- No Change
- B. SPR Declining Effort Creep Are Recruits Declining? Yes - 2x Reduce RBC No - Reduce RBC
- C. Recruitment decline or transition Are Recruits Declining?
  - Yes Reduce RBC No - No Change
- D. SPR Declining Effort Creep and/or Recruitment declining Are Recruits Declining? Yes - 2x Reduce RBC

No - Reduce RBC

- 2x Reduce RBC
- B. Not Possible
- C. Failing Recruitment 2x Reduce RBC
- D. General Stock decline 3 x Reduce RBC

# From \$1 million to \$100,000 Harvest Strategies with SPR Decision Trees

- Simple scale-less system for conserving local SPR
- No knowledge or assumptions about spatial structure required
- No biomass estimates
- SPR conditioned decision trees using CPUE & size
- Incremental changes to management to acheive target SPR levels
- Optimal catch level 'discovered' when target SPR achieved

But ... still requires knowledge of growth, reproduction and mortality rates

.....from \$100,000 down to...... \$5,000 Harvest Strategies ....

### Extending the Principal of Beverton-Holt Life History Invariance to Empirically Estimate Size based SPR Reference Points

#### **Beverton-Holt Life History Invariance**

Correlation between life history parameters:

 $L_m/L_{inf} = 0.66$ , M/k = 1.5 and  $M \times Age_m = 1.65$  (Jensen 1996) Used extensively to specify stock assessment models.

#### **Meta-Analysis**

- •63 species for all SPR parameters robustly estimated directly; biological studies of tagging or ageing in unexploited or lightly fished populations, or estimated by integrated stock assessment.
- •No use of B-H derived parameters.
- •SPR models for each species
- •Standardized wt., length, age & SPR estimated assuming 100% when cohort declines to 0.1% of original size







Indicative length-frequency histograms estimated for unfished populations of 9 species used in this analysis; Type I a) tiger flathead (*Neoplatycephalus richardsoni*), b) sharpnose shark (*Rhizoprionodon taylori*), c) gulf menhaden (*Brevoortia patronus*), Type II d) banana prawn (*Penaeus mergueiensis*), e) kawhai (*Arripis trutta*), f) sandbar shark (*Carcharinus plumbeus*), Type III g) sperm whale (*Physteter macrocephalus*), h) Mexican geoduck (*Panopea globosa*), i) school shark (*Galeorhinus galeus*). Shading indicates adult component of each length-frequency histogram. These length –frequency histograms were estimated on the basis of the parameters sets used in this meta-analysis.

## \$5000 Harvest Strategies

1Parameterize SPR Decision trees empirically with size composition studies.

2Monitor CPUE & size in the catch.

3Incrementally adjust local catch / effort / size limits / MPAs until local target size & CPUE are achieved.

4Replicate, Replicate, Replicate .....



**SA - Catch vs Effort** 



Vic - Catch vs Effort



Tas - Catch vs Effort



#### **SA - Catch vs Effort**



**Vic - Catch vs Effort** 



Tas - Catch vs Effort



**SA - Catch vs Effort** 





