Managing Uncertainty in Fisheries

Law, Data, Science, and Incentives

Why Worry About Uncertainty?

Very few humans, lots of fish
 Lower risk, mistakes are not costly
 Lots of humans, fewer fish...and trying to maximize yield
 Higher risks, costlier mistakes

Poll: Risk Factors

	Low	High
Fishing effort	Low risk	High risk
Stock vulnerability	Low risk	High risk
Uncertainty	Low risk	High risk
Central governance	High risk	Low risk
Social capital	High risk	Low risk

Status of Caribbean Fisheries

> Mixed Bag

- Very high uncertainty
- Queen conch, several grouper species overfished
- > 20 species experiencing overfishing
- > 14 species approaching overfished condition

Uncertainty and Collapse

> US west coast rockfish

- Scientific uncertainty, overfishing
- Fishery disaster, collapse of \$100 M/yr fishery

> US New England groundfish

- High management uncertainty, effort control
- Overfishing of cod and other species
- Very limited fishing opportunity, economic decline

Sources of Uncertainty

Scientific

- Data quantity and quality
- Knowledge and model structure
- Others?

> Management

- Precision of management measures
- External factors that affect outcomes
- Others?

Scientific Uncertainty

Improving Precision AND Accuracy to Reduce Uncertainty AND Risk
Accuracy: Fishery independent data and research to understand state of nature and inform model structure

Precision: Richer fishery dependent data

Optimize Data Collection

Use management goals and data availability to find right model

Design monitoring programs to achieve goals and fuel models

Management Uncertainty

How certain are we that management measures will actually work?

- Directness of relationship to desired outcomes
- Ease of monitoring and enforcement
- Effort controls
- Catch limits
- > Area restrictions

Mandate

- Annual Catch Limits required for all stocks by end of 2011(MSA Section 104 (b)(1)(B))
- ACLs must be buffered to account for uncertainty

 Establish Overfishing Level (OFL)
 Establish Annual Catch Limit (ACL) - Set below the OFL to ensure that overfishing does not occur

Relationship between ACL & OFL

NS 1 Guidelines for Setting ACLs

Dealing with Scientific Uncertainty

- Lots of stocks, little time and resources
- Data poor methods available
- More information from scarce data

Dealing with Management Uncertainty

Improved understanding of external factors that affect catch More monitoring and enforcement Management systems - data richness, accountability, direct connection to goal Management regime and F and B convergence on management goals: incentives

The Fishery of the Future

- Increased understanding of factors that influence distribution and abundance of fish
- Better assessment models provide good basis for setting ACLs
- Good monitoring programs to feed models
- Management regime creates incentives for stewardship, rich data, lower uncertainty
- ACL buffers are reduced accordingly and ACLs go up