

Dealing With Scientific Uncertainty from Stock Assessments

Fisheries Forum May 2015

Richard D. Methot Jr., Ph.D. NOAA Senior Scientist for Stock Assessments Seattle, WA

Balance Conservation and Utilization

How does Overfishing Occur?

Intentional Overfishing	Management Uncertainty
Ended with accountable	In-season controls did not
ACLs required by MSA	prevent catch from
	exceeding limit
Pre-Fishing Year	Fishing Year
Scientific Uncertainty	Ecosystem Uncertainty
Catch was controlled below	Assessment missed some
limit, but limit was not	important factor
accurate	
Few Years Hindsight	Decadal Hindsight

Response to Fishing

Fishery Production Concepts

Approaching Theoretical MSY

- Catching MSY over the long-run means controlling annual fishing mortality exactly to the control rule, but:
- We can't know the real shape/level of the production curve and matching control rule exactly
- We can't forecast next fishing season's fishable stock abundance exactly
- So, we'll always be slightly over- or under-fishing relative to the real MSY
- "Pretty Good Yield" approaches, but cannot attain, theoretical MSY over the long-term
- Better assessments help us get pretty good yield and pretty good overfishing prevention
- Climate/Ecosystem studies needed to keep short-term targets relevant to longer-term changes

Responding to Uncertainty

- OFL control rule is annual overfishing limit
- Slope of control rule is a fishing rate, F
- Where control rule intersects PRODUCTION is long-term outcome
 - Lower ABC control rule accounts for uncertainty

PRODUCTION and CATCH

Where Does Cloud of Uncertainty Come From?

- Noisy data
- Uncertain model conditions/assumptions/priors
- Natural drift since last assessment

Why Redo An Assessment?

- 1. Another few years of (still noisy) data could stabilize trend estimates
- 2. A new kind of data/study provides better calibration of some factor
- 3. Assessment is due/past due
- 4. Some indicator indicates drift off previous forecast
- 5. Past assessment was uncertain so, heck, try again

Which Stocks Need Assessments?

PROTECTION

CONCERN

DEMAND

Prioritizing Assessment Efforts

- We cannot afford data-intensive, annually updated assessments for all stocks
- Some fisheries have high constituent demand for catch that approaches biological limits
- Some stocks naturally fluctuate more
- Some stocks are more important to ecosystem
- Some stocks have lower constituent tolerance for overfishing

Triage for Data-Limited Stocks

Is there a direct indicator of relative abundance? Is there a biological indicator of catch/abundance (e.g. F)?

Tradeoffs in Prioritizing Assessments

Prioritization Goals

- At least baseline monitoring for all stocks vulnerable to fisheries
- Good enough and timely enough assessments for stocks targeted by fisheries
- Best and most timely assessments for high value, high vulnerable stocks
- Intermediate goals for good enough and timely enough can be set through a structured process
- Really well-informed goals/timeliness needs fuller understanding of system through Management Strategy Evaluations
- Attention to ecosystem/climate/habitat effects across the spectrum of assessments

