

NOAA FISHERIES

Alaska Fisheries Science Center

Management strategy evaluations An Overview

James Ianelli Resource Ecology and Fisheries Management Alaska Fisheries Science Center NMFS NOAA April 22th 2015

⁶⁶ I get to think about fish...⁹⁹

"Water" by Giuseppe Arcimboldo (1527–1593). Kunsthistorisches Museum, Vienna.

66 77

. . . .

Effective resource management—our goal

Science in support of MSEs

"Water" by Giuseppe Arcimboldo (1527–1593). Kunsthistorisches Museum, Vienna.

"Assessment questions for management"

How many?

What interactions exist?

How bad are our assumptions?

Review...

How many?

How productive?

What status (trend)?

How bad are the assumptions?

How bad are our assumptions?

What are the side effects?

Management strategy evaluation

Forces declaration of strategic goals

Finds tactical, transparent methods

Source: CSIRO, Australia

An MSE framework

- Key elements (Smith 1994)
 - 1. Manpatogeaveney?
 - 2. Uncertainty characterized
 - 3. Stakeholders involved
 - 4. Trade-offs evaluated

Conservation Profit

Multiple objectives

- For the US, any and all of the National Standard guidelines...
- 1. Multiple objectives
- 2. U
- 3. S

Explicit characterization of uncertainty

M
Uncertainty characterized
S
T

J.S. Link et al./Progress in Oceanography 102 (2012) 102–114

Involving stakeholders

Iteration required to refine scientific questions

Evaluating trade-offs

- Refined performance indicators
- Not about optimality (in any single factor)
- 1. M

4. Trade-offs evaluated

Key MSE elements

- Multiple objectives
 - Catch lots of fish for a long time...
- Uncertainty characterization
 - Looked at 30-year stochastic projection at current catches (ignore future data—poor determination of risk)
- Stakeholder involvement
 - Proposed control rule and data collection system that only appears in a scientific journal

Trade-offs

Near term catches versus long term expectation..

Basic MSE Layout

From:

Punt et al. 2014. Management strategy evaluation: best practices. Fish and Fisheries. DOI:10.1111/faf.12104

Figure 1 Conceptual overview of the management strategy evaluation modelling process.

MSE Challenges

Fulton, E.A., Smith, A.D.M., Smith, D.C. and van Putten, I.E. (2011a) Human behavior: the key source of uncertainty in fisheries management. Fish and Fisheries 12, 2–17.

What do performance indicators look like?

Scoring over alternatives

Evaluating harvest strategy

under climate change

Arct

Bering Sea Basin

Aleutian Islands.

Eastern Bering Sea (EBS) Shelf

c

Alaska

Setting catch limits...

Catch management

Catch \leq TAC \leq ABC < OFL

OFL ~ Catch at F_{MSY}

Policy testing under climate change

Ianelli et al. (2011). Evaluating management strategies for eastern Bering Sea walleye pollock (*Theragra chalcogramma*) in a changing environment. ICES Journal of Marine Science, 68(6), 1297–1304.

Policy testing under climate change

Weaknesses:

- Narrow focus on pollock
 - But control rules based on implicit ecosystem issues (e.g., Steller sea lion measures)
- Ignores future data collections and assessments (affects uncertainty characterization)
- Little traction at the Council level (stakeholder involvement low)

Strengths

 Illustrates trade-offs at a strategic level that current HCR components may require adjusting

Ianelli et al. (2011). Evaluating management strategies for eastern Bering Sea walleye pollock (*Theragra chalcogramma*) in a changing environment. ICES Journal of Marine Science, 68(6), 1297–1304.

Chinook salmon bycatch in the pollock fishery...

Is an EA/RIR an MSE???

The issue—bycatch in the pollock fishery

Chinook bycatch (numbers) Chum

Year

Risk assessment and management is hard...

WE SHOULD GO TO THE NORTH BEACH. SOMEONE SAID THE SOUTH BEACH HAS A 20% HIGHER RISK OF SHARK ATTACKS. YEAH, BUT STATISTICALLY, TAKING THREE BEACH TRIPS INSTEAD OF TWO INCREASES OUR ODDS OF GETTING SHOT BY A SWIMMING DOG CARRYING A HANDGUN IN ITS MOUTH BY 50%! OH NO! THIS IS OUR THIRD TRIP!

> REMINDER: A 50% INCREASE IN A TINY RISK IS STRL TINK

Alternatives under consideration in 2015

Three broad measures:

- 1. Combined chum and Chinook program
- 2. Changes to incentive plan requirements
- 3. Lower bycatch caps in years of low Chinook abundance

Chinook salmon EA/RIR (FMP Amend. 110)

Weaknesses

- Characterization of uncertainty
 - Extensive data employed, but behavioral aspect far too complex to model reasonably (Used an empirical approach—i.e., "what if" alternative management measures had been in place...

Strengths

- Many objectives considered
- Stakeholders very involved (outreach, long process of many meetings)
- Trade offs explicit in NEPA

A spectrum of tools, a spectrum of uses

Courtesy Sarah Gaichas et al. NEFSC

MSE developments within NOAA/NMFS

- One New FTE specializing in MSEs at each center
 - Ecosystem-based management (EBM) and social science experience in fisheries management context desired

