

NOAA Fisheries Recreational Fisheries Economics & Human Dimensions Program

Rita Curtis, Ph.D., Office of Science & Technology The Fisheries Forum May 4-7, 2014 Beaufort, NC

Overview

- Key Questions / Mandates
- Value vs. Economic Impacts
- Models & Data
- Future Directions

KEY QUESTIONS

- What are the economic effects / changes in benefits of each management alternative?
- What are the distributional effects / equity considerations (i.e., who wins / who loses)?
- What is the most **efficient** outcome?
- What are social / community effects?
- What are the broader economic impacts (the affected human environment)?

KEY MANDATES

Benefits (Cost-Benefit)

Equity / Distributive Effects

Efficiency

Safety

Social /
Community
Impacts

E.O. 12866

E.O. 12866

E.O. 12866

E.O. 12866

NEPA

NEPA

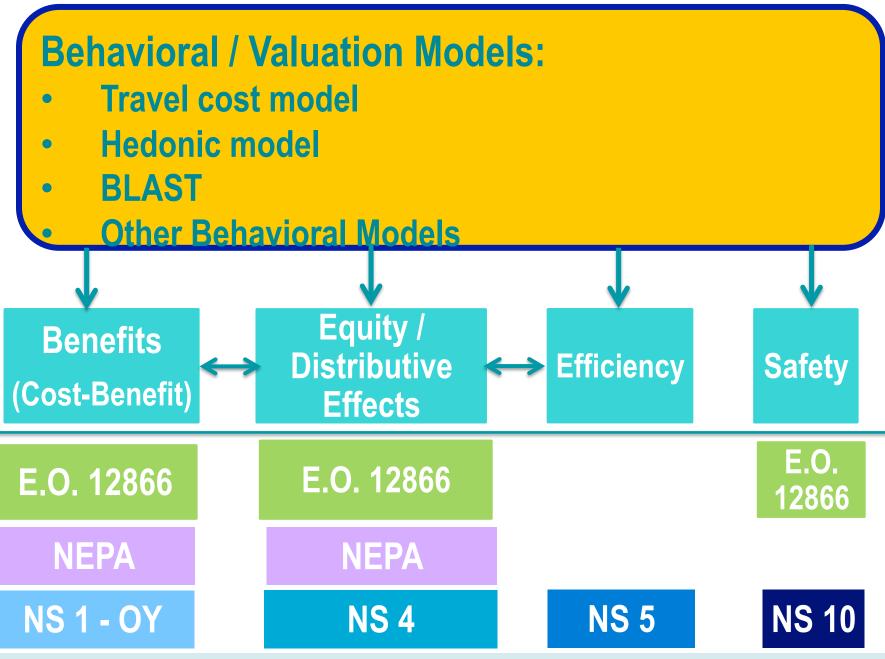
NEPA

Reg Flex Act (firms; acct'g analysis)

Reg Flex Act (for-hire firms)

E.O 12898

NS 1 - OY


NS 4

NS 5

NS 10

NS 8

Social & Community Impacts

E.O. 12866

Economic Impact Model – <u>all</u> costs-benefits

Economic impact model (affected human environment)

NEPA

Social Impact Assessment:
Social indicators
Community profiles
Other social analyses tools

NS 8

Social impact assessment Economic impact model* Minimize economic, social impacts; sustained participation of fishing communities

E.O 12898

Environmental Justice – subsistence fishing

Economic Impact Models

Management:

- Regulations' affect on other sectors
- Impacts on the "affected human environment

Provide an estimate of how angler expenditures contribute to a region's economy

Used to evaluate economic development opportunities

 For example, the number of jobs supported

 For example, how will local sales be affected by building a new fishing pier?

Economic Valuation Models

Benefit-cost analysis of management options (e.g., bag limits, season lengths, protected areas)

- Predicting reactions to management and stock changes
- Change in distribution of benefits

Benefit-cost analysis of proposed projects affecting fisheries (e.g., benefits of dam removal)

Natural resource damage assessments (e.g., oil spills, hurricanes)

Angler Expenditure Data

Survey Region	Region	Before Summit	Post - Summit
		2006	2011
Angler Expenditure Survey	Nationwide	X	X
Economic Valuation Questions	Nationwide	X	X

Uses: Economic Impact Analysis

- ---Industry statistics
- ----Management (but not Cost-Benefit Analysis)

Challenges

Delays in completing analysis

Costly to implement

Solution

Conduct durable goods survey in 2014 Conduct trip expenditure survey in 2016

For Hire Cost-Earnings: Before & After 2010 Summit

NMFS Data Plan

Every 5 years

Uses

- ----Economic impacts
- ----Regulatory Flexibility Act
- ----Cost-benefit

Survey Region	Pre- Summit	Post - Summit
	2005-09	2010-14
Northeast		X
Southeast		X
West Coast	X	X
Pac. Islands		X
Alaska		X
Caribbean		
Atlantic HMS		X

Feedback at Workshop

"This information is invaluable to the charter industry."

"Information collected on taxes paid and generated extremely valuable."

Stated Preference / Conjoint Surveys: Before & After 2010 Summit

Data Collection Plan

- Refresh rate can depend more on changes in management than "age" of data

Primary Uses

- Benefit-cost analysis (e.g., estimated value of trips, catch)
- Species trade-offs
- Reactions to management, stock changes
- BLAST- NE decision support tool

Survey Region	2005-09	2010-14
Northeast		
Groundfish	√	✓
Summer flounder, black sea bass, weakfish, scup		✓
Striped bass, mackerel, red drum, bluefish, tautog		
South Atlantic		
Snapper-Grouper	✓	
Coastal Migratory Pelagics	✓	
Dolphin-Wahoo	✓	
Gulf of Mexico		
Reef fish		✓
Coastal Migratory Pelagics		✓
Oregon & Washington		
Groundfish	✓	✓
Salmon	✓	✓
California		
Groundfish	✓	
Salmon	\checkmark	
Alaska		
Pacific Halibut	$\overline{\checkmark}$	
Salmon	✓	✓

BLAST Model

MANAGEMENT USES:

How will changes in management strategies affect

- Fishing effort?
- Angler welfare?
- Fishing mortality?
- Stocks?

What combination of management options can achieve conservation objectives?

"Two major advances of BLAST are 1) Council doesn't have to figure out how to use economic information; 2) it uses a coupled biological behavioral model" "I hope the BLAST model can be worked on to address shortcomings; it would be a step backward not to use this

cutting edge tool."

"Thinking broadly about the portfolio of projects presented, BLAST is what the program must do."

Economic Sub-Model

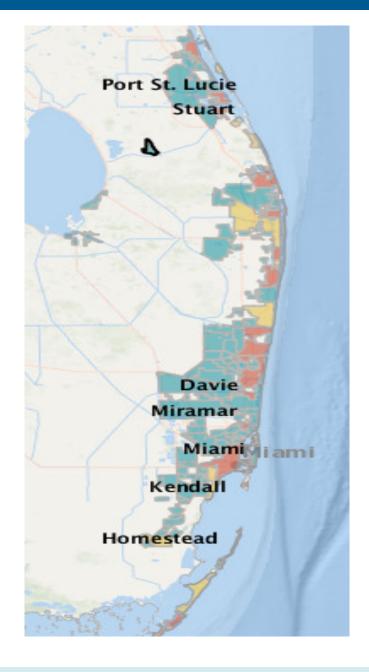
Estimate a behavioral model for recreational anglers

Expected and Fish kept and released are a actual encounters function of length structure, of fish on a trip selectivity, regulations Simulate angler behavior under alternative stock structures and regulations Effort Discards Retained Welfare Aggregate and project fish stocks

Biological Sub-Model

Social Indicators Web-based Mapping Toolbox

Social Vulnerability


- Poverty
- Personal Disruption
- Population Composition Vulnerability

Gentrification

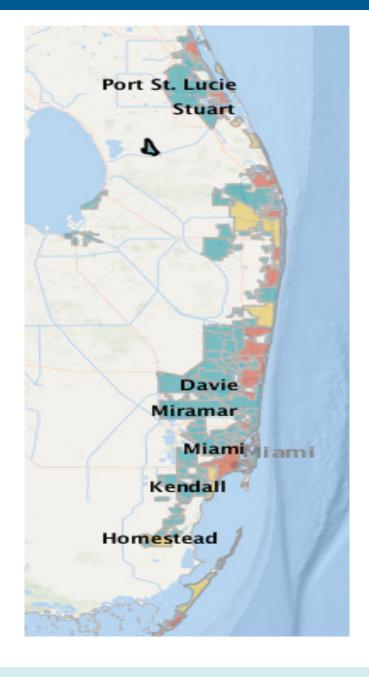
- Retiree migration
- Urban sprawl
- Natural amenities

Fishing Engagement & Reliance

- Recreational Fishing Engagement
- Recreational Fishing Reliance
- Commercial Fishing Engagement
- Commercial Fishing Reliance

Social Indicators Web-based Mapping Toolbox

Social Vulnerability


- Poverty
- Personal Disruption
- Population Composition Vulnerability

Gentrification

- Retiree migration
- Urban sprawl

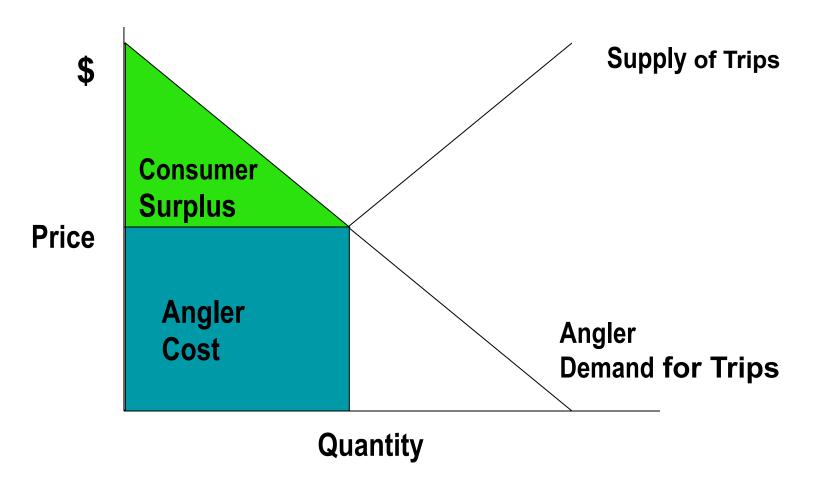
Recreational Fishing Engagement

- Commercial Fishing Engagement
- Commercial Fishing Reliance

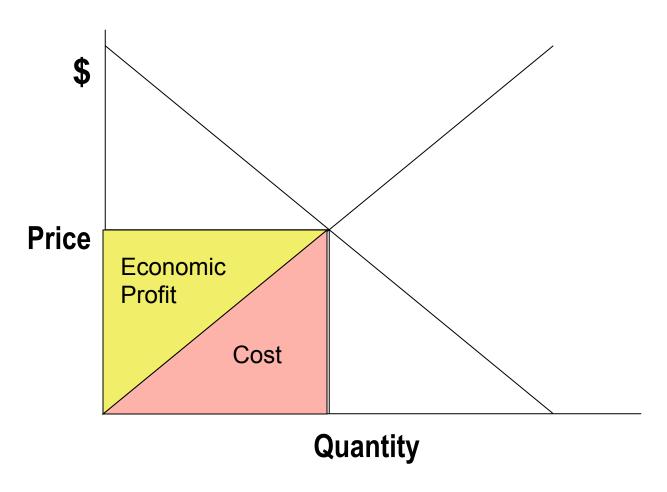
Workshop Recommendations

- 1. Increased communication of research goals and priorities for NOAA Fisheries' recreational fishing economics program.
- 2. Improve incorporation of socioeconomic information into the fishery management process.

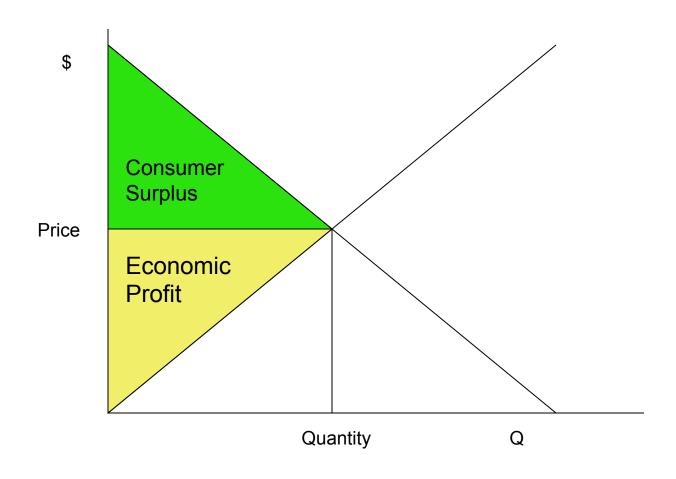
"Socioeconomics is rarely discussed during Council public meetings. It is always off on the side. How do we bring this more center and build trust in socio- economic information?"


- 3. Improved communication, cooperation and collaboration.
- 4. Improved socio-economic information.

Any questions?

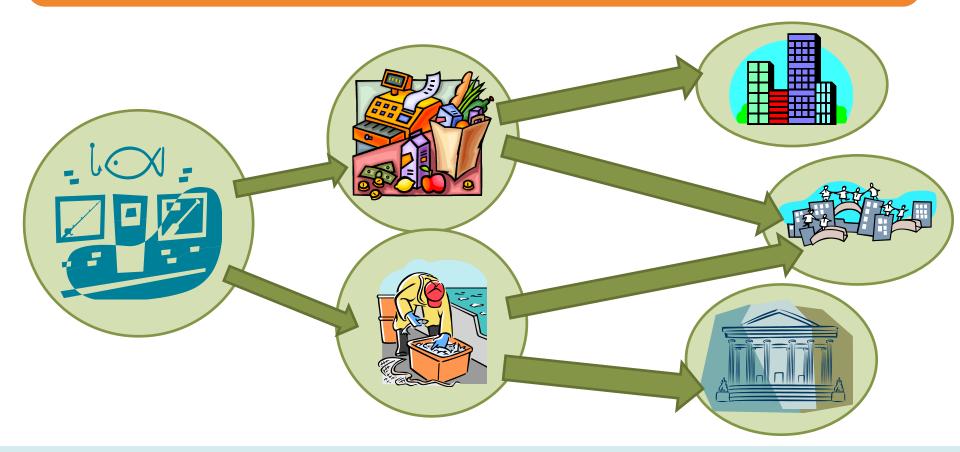


Consumer Surplus: Basis for Angler Behavioral Cost-Benefit Analysis



Producer Surplus: Basis for For-Hire Behavioral (Valuation) Analyses

Economic Value / Net Economic Benefits


Uses of Economic Impact Models (aka Input/Output Models) in Fishery Management

- Estimate impacts on sales, income, and jobs of different alternatives
- Inform managers of how these impacts are distributed
 - Across different regions, states, and (possibly) communities
 - Sectors of the regional economy
- I/O models capture inter-industry transactions between businesses and between businesses and final consumers in an economy

Economic Impact Analysis

Economic impact models trace the flow of expenditures through a community and show the distribution of impacts between consumers, industries, households, and governments.

Recreational Anglers

- Private boat sector
 - Spends \$25 million on trips
 - Willing to pay \$50 million for those trips
 - CS is \$25 million

- Shoreside sector
 - Spends \$5 million on trips
 - Willing to pay \$25 million for those trips
 - CS is \$20 million

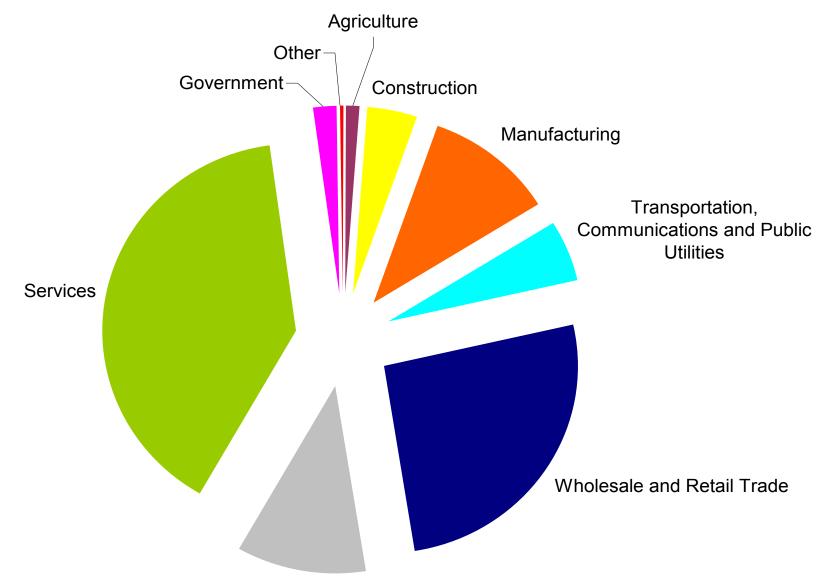
In the example above, the Private boat Sector generates the greatest economic value (net economic benefit) as well as the greatest economic impacts.

In sum,

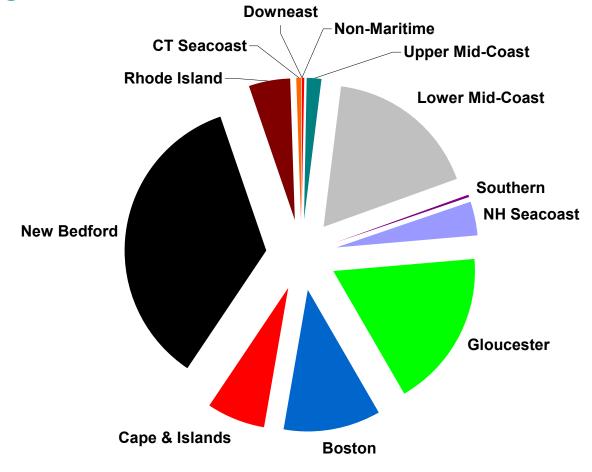
Economic Value / Behavioral Models

- To minimize effect of regulation options on anglers, for-hire operations, use behavioral / valuation model
- If economic efficiency is a policy goal (e.g., NS5), policy should seek to minimize the cost of providing goods and services to consumers and select options that generate the greatest economic value.

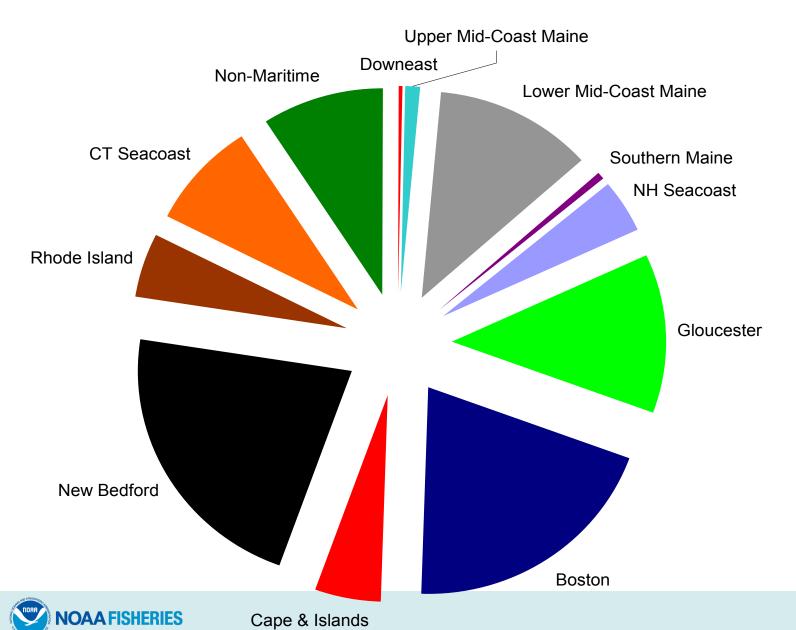
Economic Impacts


- Use to identify distributive effects (other firms, state, community)
- Use impact estimates with caution as they do not take behavioral adjustments to policy change into account (e.g., if you close fishing grounds, behavior will change (fewer trips? gish elsewhere?) and thus so will estimates of economic impacts).

Example of Distribution of Income Impacts from a Reduction in Commercial Fishing Revenue

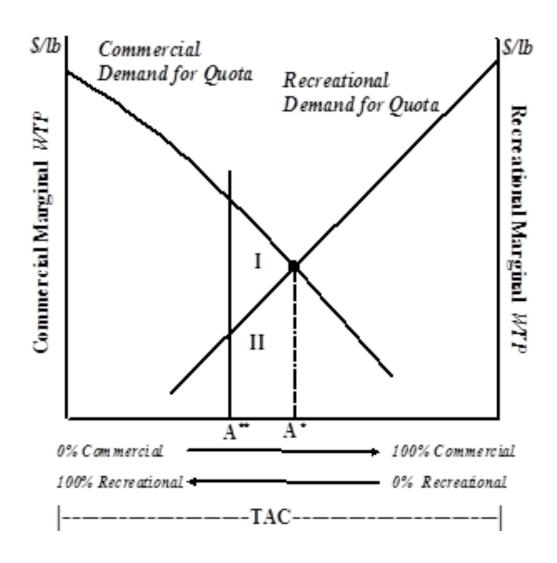

	Alternative 1	Alternative 3	Preferred
Commercial Fishing	-22,582	-29,537	-20,067
Processing	-5,267	-6,989	-4,673
Dealers	-9,097	-12,053	-8,056
Agriculture	-246	-326	-218
Construction	-1,019	-1,347	-901
Manufacturing	-1,677	-2,214	-1,481
Transportation	-3,598	-4,735	-3,161
Trade	-6,304	-8,340	-5,574
Finance	-2,614	-3,443	-2,319
Services	-9,542	-12,613	-8,439
Government	-463	-610	-409
Other	-75	-99	-66
Total NOAA FISHERIES	-62,488	-82,307	-55,367

Economic Impact Model: Income impacts by Industry



Regional Distribution of Direct Income Impacts

Economic Impact Model: All Income Impacts by Location



Net Economic Benefits and Reallocation of Quota/ACL

- Net economic benefits are calculated as the change in consumer and producer surpluses due to new allocation of quota/ACL.
- In general, reallocate to sector with greater marginal willingness to pay (MWTP) until MWTP is equal across sectors and economic value (net economic benefits) is maximized.

Economically Efficient Allocation

