OpenOcean 2013. Integrating habitat dynamics into population & ecosystem assessment using cooperative research within an IOOS framework

Industry/Outreach Chris Roebuck Greg DiDomenico (Garden State Seafood) Laura Palamara (Rutgers) John Hoey (NOAA) Geir Monsen (Seafreeze ltd) Hank Lackner Dan & Lars Axelsson Lunds Fisheries Eleanor A. Bochenek (Rutgers)

Fishery Scientists/Ecologists Physical and Biological John Manderson (NOAA/NMFS/NEFSC) Dave Richardson (NEFSC) John Quinlan(SEFSC) Howard Townsend(NEFSC) Jon Hare (NEFSC) Tim Miller(NEFSC) Mike Jech (NEFSC) Olaf Jensen (Rutgers)

Oceanographers Josh Kohut (Rutgers) Andre Schmidt (SMAST) Nikitas Georgas (Stevens) **Enrique Curchitser (Rutgers)**

Fisheries Management Rick Seagraves (MAFMC)

Jason Diddon (MAFMC)

Human Dimensions Steven Gray (U Hawaii)

NOAA OFFICE OF SCIENCE AND TECHNOLOGY

- Does our habitat paradigm cross the land-sea boundary?
 - Seascapes are not landscapes

- Does our habitat paradigm cross the land-sea boundary?
 Seascapes are not landscapes
- Regional Ocean Observing Systems IOOS are Hydrodynamic Information Systems
 - & partnerships of stakeholder experts with vested interest
 in regional ocean monitoring & forecasting of physics to fish

- Does our habitat paradigm cross the land-sea boundary?
 - Seascapes are not landscapes
- Regional Ocean Observing Systems IOOS are Hydrodynamic Information Systems
 - & partnerships of stakeholder experts with vested interest in regional ocean monitoring & forecasting of physics to fish
- Integrating habitat dynamics into population & ecosystem assessment & dynamics: Cooperative research in an IOOS framework

What is habitat?

Niche theory: Hutchinson, G. E. 1957. Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:415-442.

Temperature C

Scenopoetic niche = <u>physico-chemical factors</u> affecting population growth rate Bionomic niche = <u>biotic factors</u> affecting population growth rate

- Does our habitat paradigm cross the land-sea boundary?
 - Seascapes are not landscapes

Why is it so difficult to link habitat & population dynamics in the sea?

PROPOSED ZONING

Legend Proposed Zoning

> OTND Commercial Conservation Hamlet Light Industrial/Adult Light Industrial Rural Agriculture Rural Residential Village Tax Parcels Roads

We apply principals of landscape ecology to the sea

Landscape planning map

Block diagram of "submerged lands"

We apply principals of landscape ecology to the sea

Landscape planning map

Landscape paradigm

Block diagram of "submerged lands"

- Landscape ~2 dimensional
- Habitat patches defined by sharp gradients/boundaries
- Flows of materials across landscape are slow & infrequent
- "Natural" change of landscape is slow

We apply principals of landscape ecology to the sea

"Natural landscape changes only occur in geological dimensions of time" Troll (1950) The geographic landscape & its investigation

Landscapes are "stationary"

- Landscape ~2 dimensional
- Habitat patches are defined by sharp gradients/boundaries
- Flows of materials across landscape are slow & infrequent
- "Natural" change of landscape is slow

hotlink

Property	Air	Seawater	Ratio SW/AIR	Oroanism
Density	low	high	850:1	~seawater
Thickness (Viscosity)	low	high	14:1	
Drag (Reynolds #)	low	high	12:1	
Heat capacity	low	high	4:1*	
Heat transfer by conduction	low	high	23:1	~seawater
"Salt" concentration	low	high	32:1	~seawater
% water by weight	low	high	40:1	~seawater
Oxygen concentration	high	low	1:38	
Oxygen diffusion	high	low	1:10	
Speed of sound	slow	fast	4:1	
Light penetration	high	low	1:100-1mill	
Electrical conductivity	low	high	20 bill:1	

Property	Air	Seawater	Ratio SW/AIR	Organisms
Density	low	n high	850:1	~seawater
Thickness (Viscosity)	low	high	14:1	
Drag (Reynolds #)	low	y high	12:1	
Heat canacity	low	n high	4:1*	
He Controls body n	nor	pholo	ogy & m	notion ^{er}
"San concentration	IOW	пвп	52.1	seawater
% water by weight	low	high	40:1	~seawater
Oxygen concentration	high	low	1:38	
Oxygen diffusion	high	low	1:10	
Speed of sound	slow	fast	4:1	
Light penetration	high	low	1:100-1mill	
Electrical conductivity	low	high	20 bill:1	

Property	Air	Seawater	Ratio SW/AIR	Organisms
Density	low	high	850:1	~sea wáter
Controls or masks m	neta	bolisi	m & phy	siology
Diag (Reynolus #)	10 W	пвп		
Heat capacity	low	high	4:1*	
Heat transfer by conduction	low	high	23:1	~seawater
"Salt" concentration	low	high	32:1	~seawater
% water by weight	low	high	40:1	~seawater
Oxygen concentration	high	low	1:38	
Oxygen diffusion	high	low	1:10	
Speed of sound	slow	fast	4:1	
Light penetration	high	low	1:100-1mill	
Electrical conductivity	low	high	20 bill:1	

Property	Air	Seawater	Ratio SW/AIR	Organisms
Density	low	high	850:1	~sea wáter
Thickness (Viscosity)	low	high	14:1	
Drag (Reynolds #)	low	high	12:1	
Heat capacity	low	high	4:1*	
Heat transfer by conduction	low	high	23:1	~seawater
"I imite metabolici		high	32:1	~seawater
		high	40:1	~seawater
Oxygen concentration	high	low	1:38	
Oxygen diffusion	high	low	1:10	
Speed of sound	slow	fast	4:1	
Light penetration	high	low	1:100-1mill	
Electrical conductivity	low	high	20 bill:1	

* by volume 3500:1

Comparison of physical properties of air and water? "Fish can't overcome physics"

Property	Air	Seawater	Ratio SW/AIR	Organisms
Density	low	high	850:1	~sea wáter
Thickness (Viscosity)	low	high	14:1	
Drag (Reynolds #)	low	high	12:1	
Heat capacity	low	high	4:1*	
Heat transfer by conduction	low	high	23:1	~seawater
				•

Controls dominant sensory modes Vertical location of plant production

	_	C .	
Speed of sound	SIOW	fast	4:1
Light penetration	high	low	1:100-1mill
Electrical conductivity	low	high	20 bill:1

Connectivity of fundamental "habitat" forming processes

Terrestrial landscape perspective:

Seascape perspective material coupling

Frontal probability (from Dave Ullman)

Nutrients + 1 & 2 production + advection + fronts

40 kms

Should paradigms of seascape & landscape ecology be the same?

Foundation of landscape ecology: geography & geochemistry Most terrestrial processes decoupled from dynamics of atmosphere by gravity & adaptation to extreme variability of a low viscosity fluid

Should paradigm of seascape & landscape ecology be the same?

Seascapes are <u>not</u> stationary

Foundation of seascape ecology: hydrography & hydrodynamics Most marine processes coupled to properties & dynamics of ocean fluid which has high viscosity & damped variability What we need is a Hydrodynamic Information System (HIS) describing the properties & dynamics of the fluid fish live in

Integrated ocean observatories (IOOS) are HIS Gliders

IOOS are regional ocean collaboratories built by expert stakeholder partners

- Does our habitat paradigm cross the land-sea boundary?
 Seascapes are not landscapes
- Regional Ocean Observing Systems IOOS are Hydrodynamic Information Systems (HIS vs. GIS)
 - & partnerships of stakeholder experts with vested interest in regional ocean monitoring & forecasting from physics to fish
- Cooperative research within an IOOS framework: Integrating habitat dynamics into population & ecosystem assessment & dynamics:

Collaborative development of a seascape ecology you can use Sometimes a management problem finds you

"Make habitat model to reduce butterfish bicatch in longfin squid fishery"

10

Collaborative development of a seascape ecology you can use

Sometimes a management problem finds you

"Make a habitat model to reduce butterfish bicatch in longfin squid fishery"

Fishery Scientists/ Ecologists John Manderson (NOAA/NMFS/NEFSC) Laura Palamara (Rutgers) Olaf Jensen (Rutgers)

Physical and Biological Oceanographers Josh Kohut (Rutgers) Matt Oliver (U. Delaware) Industry/Outreach Chris Roebuck Dan & Lars Axelsson Hank Lackner Geir Monsen (Seafreeze) Greg DiDomenico (Garden State Seafood) Lunds Fisheries Eleanor A Bochenek (Ru

Eleanor A. Bochenek (Rutgers) John Hoey (NOAA/NMFS/NEFSC)

Fisheries Management Jason Didden (MAFMC) **Human Dimensions** Steven Gray (U Hawaii) "Butterfish Smackdown" Make competing models

Hypothesis:

Combining fishermen & scientists' knowledge within an Operational Ocean Observing System should:

(1) Increase chance of accurately capturing ecosystem dynamics & key driving processes at appropriate space-time scales

(2) enable adaptive decision making at scales matching those of the ecosystem

Lessons learned

- 1) Habitat model has large spatial extent & coarse grain like the federal survey data used to make it
 - grain ~ 40 km². Accurate at coarse grain
 - Fine scale habitat associations fisherman know not described

Lessons learned

- 1) Habitat model has large spatial extent & coarse grain like the federal survey data used to make it
 - grain $\sim 40 \text{ km}^2$
 - Fine scale habitat associations not described
- 2) We need to map habitat conditions under the water's surface where fish live

Lessons learned

- 1) Habitat model has large spatial extent & coarse grain like the federal survey data used to make it
 - grain ~ 40 km².
 - Fine scale habitat associations not described
- 2) We need to map habitat conditions under the water's surface where fish live
- 3) Animals concentrated in habitats under or un-sampled in assessment surveys
 - Seasonally productive inshore & offshore fringes of ecosystem where rates of mixing & nutrient enrichment high
 - Where triggers for ecological processes including migration are changing rapidly with climate change

Habitat model 3.0

Goal: Develop model to address lesson # 3

- Quantify amount of habitat not sampled along ecosystem fringes
- Model changes in habitat (& potential species distributions) with seasonal & inter-annual changes in climate

Habitat model 3.0

Goal: Develop model to address lesson # 3

1) Quantify amount of habitat not sampled along ecosystem fringes

 Model changes in habitat (& potential species distributions) with seasonal & inter-annual changes in climate

Strategy for model building: Keep it Simple Stupid (KISS) Defensible mechanistic & empirical grounds Model must be accurate

Empirical grounds (Cross validation):

$+ \sim 100$ years of laboratory & field research

 $\overline{1}$

Model with just bottom temperature marginally more accurate than more complex model

Number of variables in model

Mechanistic grounds: "Temperature is tyrannical in the ocean"

Mechanistic grounds: "Temperature is tyrannical in the ocean"

- Thermal properties of seawater
 - Ocean is thermally benign
 - Heat capacity in ocean is 3500 x's higher than air by volume & ocean volume is huge. Temperature less variable & slow to change
 - Most animals are "cold blooded" ectotherms. Costs of being warm blooded high, benefits are low.
 - Heat transfer by conduction > 20x faster in ocean than air. Heat transfer by free & forced convection 40 & 190 xs faster

Mechanistic grounds: "Temperature is tyrannical in the ocean"

- Thermal properties of seawater
 - Ocean is thermally benign
 - Heat capacity in ocean is 3500 x's higher than air by volume & ocean volume is huge. Temperature less variable & slow to change
 - Most animals are "cold blooded"ectotherms. Costs of being warm blooded high, benefits are low.
 - Heat transfer by conduction > 20x faster in ocean than air. Heat transfer by free & forced convection 40 & 190 xs faster
- Ectotherms: metabolism & <u>ALL</u> performance rates linked to metabolism are regulated by external temperature
 - + 2C Temperature ~ metabolic rate + 15%

Thermal niche model + bottom temperature hindcasts

= Thermal habitat simulation

Thermal niche model with metabolic basis fit to field data

Topt=18, Er=1.3, Ed=3.5

IOOS ocean model hindcast of daily average water temperature under the surface

> *ROMS* Enrique Curchitser

Simulated thermal habitat quality on the bottom (2d) 1989-1990 Habitat Quality 01-Aug-1989 45 Good 0.9 44 0.8 43 42 0.7 0.6 41 0.5 40 0.4 39 38 0.3 0.2 37 0.1 Poor 36 35 2002-2003 01-Aug-2002 45 0.9 44 0.8 43 42 0.7 0.6 41 0.5 40 39 0.4 0.3 38 0.2 37 0.1 36 35 -76 -74 -72 -70 -68 -64 -80 -78 -66

What can we do with model v3.0?

What can we do with model v3.0?

• Quantify effects of thermal habitat dynamics on catch-ability (Q) in assessment surveys & consider in observed biomass estimates?

SARC 49: butterfish population biomass estimate With no landings, catchability in survey(Q) used to scale biomass

Cumulative thermal habitat suitability Fall NEFSC assessment surveys. Restratify data for observed population biomass estimation?

What can we do with model v3.0?

• Quantify effects of thermal habitat dynamics on catch-ability (Q) in assessment surveys & consider in estimates of observed biomass?

39

20

Logistic population growth with density dependence

K (environmental carrying capacity) = 450 fish α (K per fish) = 1/K = 1/450 = 0.0022

Time

Day of the year

An index of annual minimum habitat volume hV_t

Simple population model that puts density in density dependence (i.e. # individuals in a habitat volume)

Hypothesis:

- Dynamic changes in habitat availability in the ocean can modulate mechanisms of density dependence
- Can partially decouple mechanisms of population regulation from population number (e.g. encounter rates with predators including fisherman?)

Empirical support for 'winter habitat squeeze" hypothesis Longfin squid population biomass estimates

Hypothesis:

Combining fishermen & scientists' knowledge within an Operational Ocean Observing System should:

(1) Increase chance of accurately capturing ecosystem dynamics & key driving processes at appropriate space-time scales

- Does our habitat paradigm cross the land-sea boundary?
 - Seascapes are not landscapes
 - fluid properties & processes are paramount
 - seabed features important as predation refuges, surfaces for accumulation of organic matter etc. but within context of properties of the fluid

- Does our habitat paradigm cross the land-sea boundary?
 - Seascapes are not landscapes
- Regional Ocean Observing Systems IOOS are Hydrodynamic Information Systems
 - & Neutral ground facilitating interdisciplinary collaboration among government, academic, industry stakeholder experts in science informing regional ecosystem assessment & management

- Does our habitat paradigm cross the land-sea boundary?
 - Seascapes are not landscapes
- Regional Ocean Observing Systems IOOS are Hydrodynamic Information Systems
 - & Neutral ground facilitating interdisciplinary collaborations among government, academic, industry stakeholder experts
- Integrating habitat into population & ecosystem requires focusing on dynamic properties of habitat/seascape

Lets get complicated: Integrating water column features with seabed characteristics

Add 0.1C increments to November/December bottom temperature cl

Potential habitat NovDec

°C above NovDec bottom temperature climatology

Stochastic metapopulations: with habitat loss & fragmentation Lande model

Velocities (length-time scales) of turbulence in the Atmosphere & Ocean

Steele & Henderson (1994)

Time log(year)

Does the landscape paradigm to work in the Sea? Length-time scales of atmosphere & ocean

Does the landscape paradigm to work in the Sea? Length-time scales of atmosphere & ocean

Does the landscape paradigm work in the Sea? Length-time scales of atmosphere & ocean

From Mamayev (1996) & Steele & Henderson (1994)

Time log(year)