Setting the Stage for Catch Accounting – Guiding Principles for Monitoring Programs

Bob Trumble MRAG Americas

Based on a report for EDF

Development of the GP

- Fisheries struggle with monitoring
 - Elements, coverage, cost
- Workshops May, Nov 2010
 - International panel of experts
 - Fishery presentations
 - Challenges encountered
 - Lessons learned
- Balance general vs. specific

Overarching Themes

- Monitoring strategy is an essential component of effective, long term management for all fisheries.
- Monitoring system effectiveness correlates with the level of effort and investment in the system.
- Each fishery is unique and requires its own unique monitoring solutions.
- Monitoring systems need to evolve over time along with fisheries.
- Learning from the experiences of others we can develop better monitoring systems more quickly.

Stakeholders

Scientists, managers, industry, service providers, NGOs, enforcement

Goals

For science, industry, management, enforcement

Fishery Characteristics

Gear, vessel size, # participants, scale, location, spatial and temporal effort

Enforcement Considerations

Regulations, enforceability, resources, education

Costs

Responsibility, process, timeline

Monitoring Strategies

At-sea vs dockside, self-report vs indep, infrastructure

Coverage Levels

Appropriate, risk, affordable

A D A P T I V E

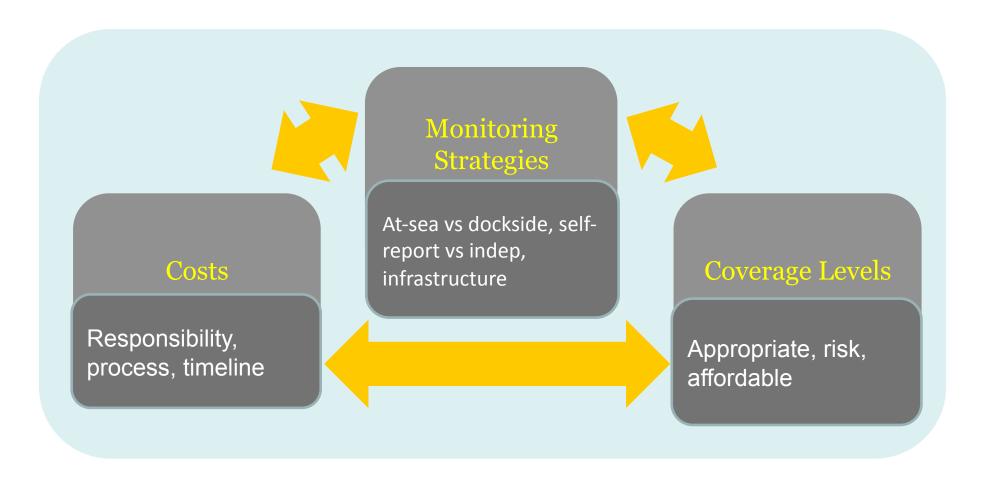
A P P R O A C

Stakeholders

- True engagement brings buy in
- Leadership is essential
- Consultation leads to effective solutions
- Advisory Committees are an important tool
- Facilitators can help with difficult issues
- Communication & education are critical
- Industry should be given responsibility
- Service providers play an important role

Fishery Characteristics

- Current management regime
- Fleet characteristics
- Spatial and temporal characteristics
- Biological characteristics of the catch
- Associated environmental issues
- Socioeconomic factors


Goals

- All stakeholders involved
- Often many goals, often in conflict
- Must be clearly stated with relative priority
- Often a single primary motivating catalyst
- Define objectives around data:
 - Precision/Accuracy & Timeliness
 - Credibility/Transparency
- Goal setting is not a one time activity

Enforcement Considerations

- Need to be considered early in planning
- Transparency with industry
- Enforceability of monitoring strategy
- Enforcement costs considered
- Education to officers
- Use incentives where possible

The Monitoring Triangle

Monitoring Strategies

At Sea Data Collection

Information about:
All catch
Discard amts & conditions
Protected spp. interactions
Fishing location & effort
Unsorted catch samples

Dockside Data Collection

Information about:
Landings only
Weights can be verified
Samples can be collected

Self Reported Independent Collection Self Reported Independent Collection

Hails
Fishing Logs
Industry collected
samples

<u>Technology Options</u>: Electronic Hails Electronic Logs Aerial Surveys At Sea Observers Fishing Log Audit

Technology Options:
Electronic Monitoring
VMS

Hails Fish Tickets

<u>Technology Options</u>: Electronic Hails Electronic Fish Tickets Credit Card System Dockside Monitors Port Samplers Plant Audits

<u>Technology Options</u>: Electronic Landing Reports

Costs

- Stakeholders receiving benefit should be considered for funding involvement
- Govt/Industry cost sharing common
- Cost responsibility linked with control
- Cost burden can shift over time
- Fund collection mechanisms can be key
- Evaluate design aspects for cost implications

Coverage Levels

- Coverage and cost highly correlated
- Coverage will be informed by goals
- Science/Manag./Enforce./Industry coverage goals often not aligned
- Data precision/accuracy goals key
- Fishery characteristics key
- Threat assessment, cost/benefit helpful

Adaptive Approach

- The data must be analyzed to learn and improve the monitoring approach
- Circumstances will change
 - Stock condition
 - Outside forces
 - Industry will adapt
- Trade off between stability and adaptability
- Allow adequate time for implementation
- Review and refine

Why Catch Accounting?

- Building block for science and management
- $B_{T2} = B_{T1} + R + G D$
- Deaths = Z = M + F
- Need catch accounting for F

What Goes Into Catch Accounting

- Landings
- Plus discards of retained species
- Plus discards of non-retained
- Plus ghost fishing mortality
- Interactions with ETP species

What do decision makers need to know?

Are My Catch Data Adequate?

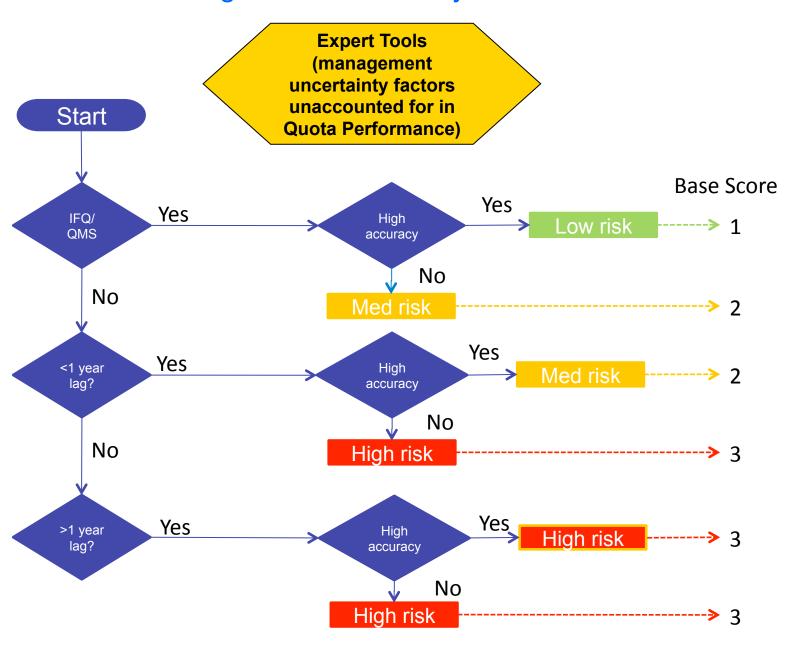
- 1. What needs to be estimated from the data?
- 2. What resolution (e.g., time and space) is needed?

Estimates for:

- Landed
- Discarded
- Rare events
- Biological Information

Resolution:

- Fishery wide
- Fleet/sectors
- Season/area
- Individual vessel


Management uncertainty decision tree

Expert Tools
(management
uncertainty factors
unaccounted for in
Quota Performance)

Accuracy of information

Timeliness of information

Management uncertainty decision tree

Stakeholders

Scientists, managers, industry, service providers, NGOs, enforcement

Goals

For science, industry, management, enforcement

Fishery Characteristics

Gear, vessel size, # participants, scale, location, spatial and temporal effort

Enforcement Considerations

Regulations, enforceability, resources, education

Policy

Implementation

Review