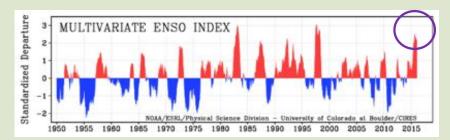

Highly anomalous environmental conditions since 2013!

Highly anomalous environmental conditions since 2013!

The 'Blob'





Highly anomalous environmental conditions since 2013!

The 'Blob'

Godzilla El Niño

MARINE SCIENCE

'The Blob' invades Pacific, flummoxing climate experts

Persistent mass of warm water is reshuffling ocean currents, marine ecosystems, and inland weather

By Eli Kintisch

arine biologist Robert Pitman thought he'd seen it all after decades of conducting marine mammal surveys off the coast of southern California. But little prepared him for what he noticed off

tained by a western No winds that and push co tudes south Blob 2.0

MARINE SCIENCE

ated a mass ated a fisheries management

Unusual warmth strengthens calls for ecosystem-based decisions.

BY VIRGINIA GEWIN

T nprecedented conditions in the Pacific Ocean have sent fisheries managers into uncharted waters. 'The blob', an unusually warm mass of water that has been parked in the northern Pacific for 18 months,

Fisheries Society annual meeting in Portland, Oregon, last week. Managers tend to base limits on assessments that focus on individual species and presume that population trends are stable. Ecosystem-based fisheries management aims for a more comprehensive approach that considers variables such as predatorhas quelled upwelling that delivers nutrients to prey relationships, climate conditions and

The biggest barrier may be the need to collect and analyse relevant biological data, such as information on how fluctuations in the population of a prey species will affect its predators. Supporters of ecosystem-based fisheries are creating tools such as the California Current Predator Diet Database, which is amassing information about the eating habits of 119 species. At the fisheries meeting, Amber Szoboszlai, a research analyst at the Farallon Institute for Advanced Ecosystem Research in Petaluma, California, showed how she had used the database to determine that fish eat 75% of the anchovies consumed in the Pacific, whereas mammals eat only 16% and seabirds 7%.

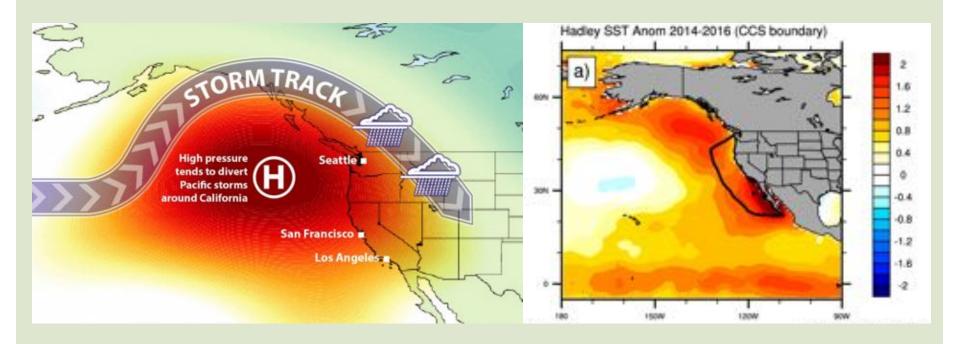
If the blob signals a regime change in the Pacific, conservationists argue that ecosystem-based management will be essential to preventing a catastrophe. "The whole system seems to be changing radically," says Rebecca Goldburg, director of ocean science for the Pew Charitable Trusts in Washington DC. .

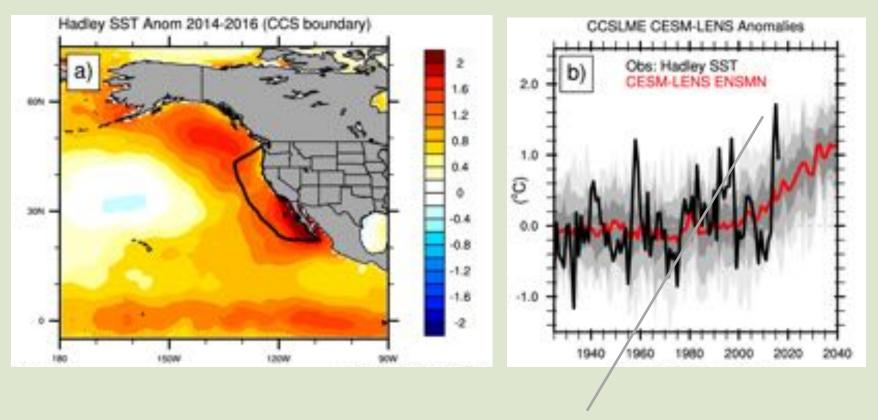
Latest forecast suggests 'Godzilla El Niño' may be coming to California

By Rong-Gong Lin II Contact Reporter

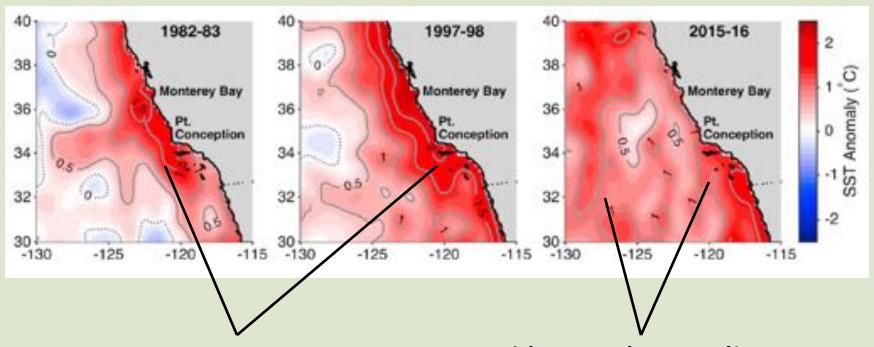
AUGUST 13, 2015; 12:54 PM | REPORTING FROM SAN FRANCISCO

The strengthening El Niño in the Pacific Ocean has the potential to become one of the most powerful on record, as warming ocean waters surge toward the Americas, setting up a pattern that could bring once-in-ageneration storms this winter to drought-parched California.




Highly anomalous environmental conditions since 2013!

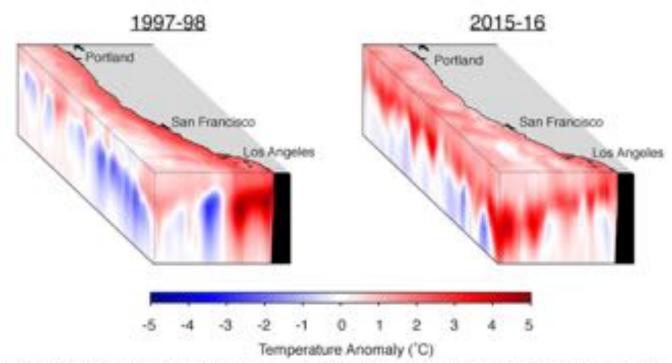
The 'Blob': anomalous warming in the NE Pacific


The 'Blob': anomalous warming in the NE Pacific

Unprecedented SST anomalies

Jacox et al. (2017)

Comparison of SST Anomalies in Strong El Niños


Coastal anomalies in 1982-83 and 1997-98

Widespread anomalies in 2015-16

= Blob + El Niño

Jacox et al. (2016)

Comparison of Thermal Structure in Strong El Niños

Caption: Wintertime temperature anomalies off the U.S. west coast during the strong El Niños of 1997-98 and 2015-16. In 1997-98 warming was strongest near the coast, consistent with effects of El Niño. In 2015-16, warming was more uniform and widespread, consistent with pre-existing warming known as 'the Blob.' (Michael Jacox)

'The Blob' overshadows El Niño

Research identifies earlier ocean warming as dominant effect off West Coast

Caption: The Blob and El Niño are on their way out, leaving a disrupted marine ecosystem behind. (Michael Jacox)

Biological Impacts in the California Current

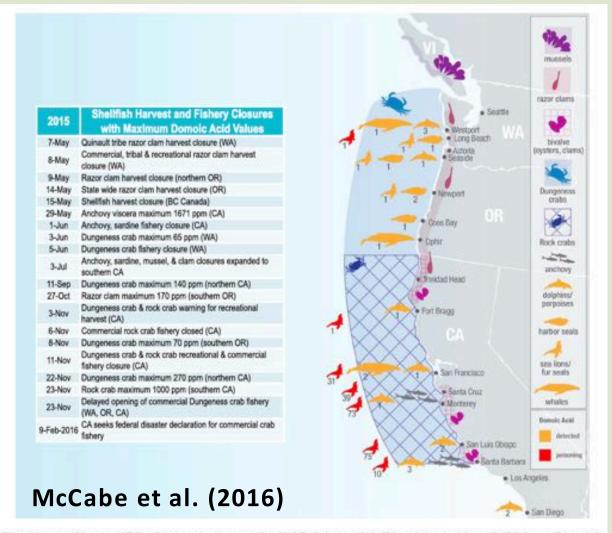


Figure 1. Impacts of domoic acid (DA) on fisheries and marine mammals in 2015. Shaded areas with shellfish symbols on land denote shellfish dosures. Fish symbols indicate northern anchovy closures at designated landing sites. Shaded or hatched areas offshore (Dungeness crab and rock crab) correspond to the dosures listed on the left. Stranded marine mammals with detectable DA (orange) and California sea lions diagnosed with DA poisoning (red) are pictured with the number of individuals indicated. DA poisoning is defined as the presentation of at least two of the following: neurologic signs (seizures, head weaving, ataxia), detectable DA, histopathologic lesions, and/or blood chemistry changes.

Biological Impacts in the California Current

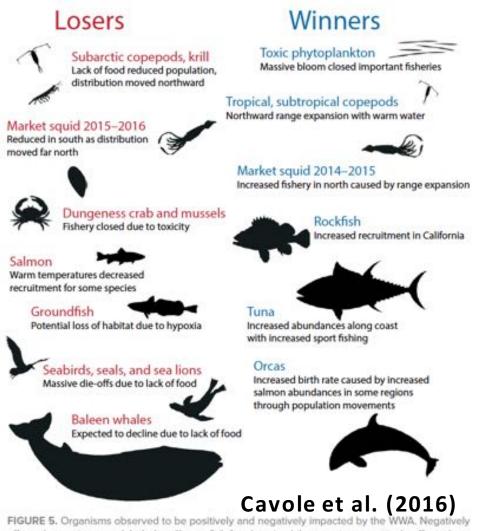
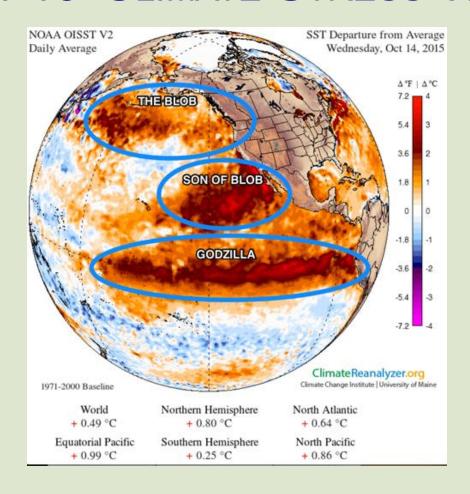
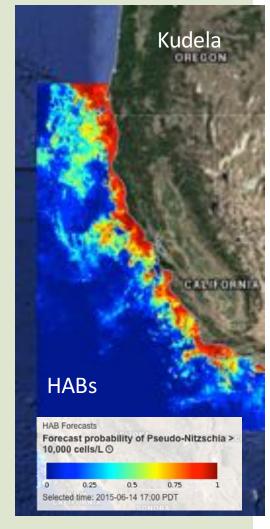




FIGURE 5. Organisms observed to be positively and negatively impacted by the WWA. Negatively affected organisms are labeled as "Losers" (left column), while organisms positively affected are labeled as "Winners" (right column). Organisms are presented in both columns from lower (top of the column) to higher (bottom of the column) trophic levels.

2014-16 'CLIMATE STRESS TEST'

- Environmental conditions dominated the CCLME with record-high SST anomalies (the warm 'Blob') in the NE Pacific and off Baja California in 2014–2016, continued drought, followed by one of the largest El Niños of the past 100 years in 2015-2016.
- Multiple indicators → poor productivity & anomalous events including:
 - Huge harmful algal blooms → fishery closures,
 - In-stream pre-spawn Chinook salmon die-offs & low catches
 - Mass mortalities of CA sea lions, Guadalupe fur seals, & common murres,
 - Record entanglements of baleen whales in nearshore fishing gear,
 - Observed high numbers of juvenile leatherback turtles.
- Need for EBFM tools (IEA); 'climate-ready' strategies; dynamic ocean management

Biological Impacts in the California Current

TABLE 1. Unusual sightings of species associated with the 2013–2015 warm-water anomaly in the northeastern Pacific, B = Bird, M = Marine mammal. F = Fish, I = Invertebrate, R = Reptile, NC = No change, NA = Not applicable.

Sightings	Common Name	Scientific Name	Sightings Site	Typical Northernmost Distribution	Range Extension (km)
Mass Strandings	Brown Booby (B)	Sula leucogaster	37.72°N1	27.84°N ²⁰	1,360
	Tristram's Storm-Petrel (B)	Oceanodroma tristrami	37.72°N1	21.00°N 21	3,670
	Guadalupe Fur Seal (M)	Arctocephalus townsendi	37.00°N 2	NC	NA
Shift in Distribution	Blue Marlin (F)	Makaira nigricans	59.80°N ²	34.00°N ²²	3,400
	Largemouth Blenny (F)	Labrisomus xanti	32.84°N 4	28.18°N ²³	540
	Louvar (F)	Luvarus imperialis	53.64°N ⁵	47.40°N ²²	1,000
	Mahi Mahi (F)	Coryphaena hippurus	59.80°N ³	47.40°N ²²	1,700
	Scalloped Hammerhead (F)	Sphyrna lewini	59.80°N ³	34.43'N ²²	3,300
	Siender Snipefish (F)	Macroramphosus gracilis	47.40°N 6	34.0fN ²²	1,700
	Smooth Hammerhead (F)	Sphyrna zygaena	59.80°N ³	37.00°N ²²	2,800
	Thresher Shark (F)	Alopias vulpinus	59.80°N ⁷	53.64°N 22	1,030
	Wahoo (F)	Acanthocyblum solandri	59.80°N ³	32.55°N ²²	3,500
	Whitetail Damselfish (F)	Stegastes leucorus	33.38'N®	29.03°N ²²	460
	Yellowtail (F)	Seriola lalandi	59.79°N°	53.64°N ²²	1,030
	Yellowfin Tuna (F)	Thunnus albacares	59.80°N 10	49.30°N ²²	1,570
	Greater Argonaut (I)	Argonauta argo	36.80°N ^{TI}	34.00°N ²²	640
	Painted Sea Urchin (I)	Lytechinus pictus	36.80°N 12	34.45°N 22	290
	Spiny Black Urchin (I)	Arbacia stellata	37.00°N 12	27.84°N ²⁴	1,200
	Tuna Crab (I)	Pleuroncodes planipes	36.80°N ¹³	27.84'N ²⁵	1,200
	Green Sea Turtle (R)	Chelonia mydas	33.53°N ^M	32.7fN ²⁶	120
Shift in Abundance	Alaskan Pollock (F)	Gadus chalcogrammus	59.80°N 15	NC	NA
	Albacore (F)	Thunnus alalunga	59.79°N 9	59.79°N 22	NA
	Bluefin Tuna (F)	Thunnus orientalis	59.80°N*I	59.79°N 22	NA
	Krill (f)	Euphausia pacifica	37.00°N %	NC NC	NA
Repeating Unusual Record	Bullseye Puffer (F)	Sphoeroides annulatus	34.05°N ¹⁷	33.86°N ²²	NA
	Ocean Sunfish (F)	Mola mola	59.80°N 10	59.79°N ²²	NA
	Pacific Bonito (F)	Sarda chillensis	59.79'N ⁹	59.79°N ²²	NA.
	Skipjack Tuna (F)	Katsuwonus pelamis	59.80°N 10	59.60°N 22	NA.
	Tope Shark (F)	Galeorhinus galeus	53.64°N ⁵	53.64°N ²²	NA.
	Whale Shark (F)	Rhincodon typus	36.97°N 17	36.97°N 22	NA
	Humboldt Squid (f)	Dosidicus gigas	59.80°N 10	34.45'N ²⁷	NA
	Pilot Whale (M)	Globicephala sp	59.80°N 18	59.80°N 25	NA
	Pygmy Killer Whale (M)	Feresa attenuata	36.80°N 18	23.15°N ²⁸	1,770
	Yellow-Bellied Sea Snake (R)	Pelamis platura	34.19°N *9	30.00°N ²⁹	260