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ABSTRACT  

Over the past several years, there has been growing interest among policy makers and 
others in the role that industrial energy efficiency can play in climate, air, and other potential 
regulatory actives.  For over ten years, the U.S. Environmental Protection Agency (EPA) has 
supported the development of sector specific industrial energy efficiency case studies using 
statistical analysis of plant level data to assess the distribution of energy use, controlling for a 
variety of plant production characteristics.  These case studies are the basis for the ENERGY 
STAR® Energy Performance Indicators (EPI). To date there are EPI for fourteen broad 
industries, two dozen sectors, and many more detailed product types.  This paper is a meta-
analysis of the approach that has been used in this research and the general findings regarding the 
range of performance within and across industries.  Observations about industrial plant 
benchmarking and lessons learned are explored.  We find that there are few sectors that are well 
represented by a simple “energy per widget” benchmark; that less energy intensive sectors tend 
to exhibit a wider range of within industry performance than energy intensive sectors; and that 
changes over time in the level and range of energy performance do not reveal any single pattern.   
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Introduction 
 
ENERGY STAR is a voluntary program launched by the EPA in 1992 to identify and 

promote energy efficient products, buildings, homes, and manufacturing facilities.1  The program 
was established to find cost-effective ways to reduce greenhouse gas emissions associated with 
energy use.   Initially focused on consumer products, the program expanded into the commercial 
building market in 1995 and released its first energy-efficiency benchmark for office buildings in 
1998.  In 2000, the EPA expanded the program to include manufacturing plants.   ENERGY 
STAR focuses on providing tools that encourage better corporate energy management through 
the development of sector specific energy performance benchmarks. One goal is to provide 
companies within a manufacturing sector with an objective measure of how their plant compares 
to the rest of the industry.   Most companies lack sufficient information on the relative efficiency 
of their plants within the broader industry because that information is confidential.  
Consequently, many companies did not know if their companies where operating efficiently or 
where the frontier for improved efficiency lies.  The second objective of these studies was to 
establish criteria for determining which plants would qualify for recognition.  In order to provide 
recognition for energy efficient manufacturing plants, EPA needed an objective and transparent 
means to determine which plants are best-in-class, defined by ENERGY STAR as “the upper 
quartile of performance for similar production facilities.” 

 
To develop this, one needs to address a variety of key issues: 

o How to define energy efficiency? 
o How do you control for differences between plants? 
o What statistical distributions can be used to measure the quartiles? 

 
In addition to these basic questions, data is key to the development of these case studies.  This 
paper is an overview and meta-analysis of the case study approach used based on non-public, 
plant-level data from the U.S. Census Bureau, Triangle Research Data Center and other non-
public sources. 

 
Defining Energy Efficiency2 

 
Efficiency is a measure of relative performance; but relative to what?  Defining energy 

efficiency requires a choice of a reference point or benchmark against which to compare energy 
use.  Energy efficiency benchmarks can be developed through a variety of means, such as 
engineering and theoretical estimates of performance or through observing the range of actual 
levels of performance.  The choice of method used to define efficiency depends on the need to 
define a reference point for energy efficiency.  One of the challenges with using energy 
efficiency benchmarks based on engineering or theoretical estimates is that they are often 
dismissed by industry as being economically infeasible. Consequently, these case studies has 
focused on developing benchmarks based on actual or observed operational performance rather 

                                                
1 See EPA (2011) for more information. 
2 This section draws from Boyd, G. (2012). A Statistical Approach to Plant-Level Energy Benchmarks and 

Baselines: The Energy Star Manufacturing-Plant Energy Performance Indicator. Carbon Management Technology 
Conference. Orlando, Florida USA. 
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than theoretical estimates of potential efficiency levels.  Additionally, EPA needed to identify a 
benchmarking method that would be perceived by users as providing economically feasible 
performance targets. 

The reference point for economic potential (observed practice) depends, in part, on the 
reason for measuring efficiency as well as the available information to create a reference.   
Generally, the Ceteris Paribus principle ("all other things being equal or held constant") is 
usually desired in creating the reference point, or benchmark.  From a practical perspective there 
is a hierarchy of measures and methods by which one can “hold constant” things that influence 
energy use that are not part of energy efficiency.  The first is some measure of production 
activity, either production of the final product or, alternatively, a ubiquitous input into the 
production process.  This is most commonly done by computing the ratio of energy use to 
activity, a measure of energy intensity.  Energy intensity is a common metric that controls for 
changes in production and is commonly confused with energy efficiency, as in the statement “the 
industry or plant’s energy efficiency has improved based on the fact that the corresponding 
energy intensity has declined over time.”  This type of statement brings us to the second way that 
one may approach the ceteris paribus principle for measuring efficiency, comparing energy 
intensity a particular plant, firm, or industry to itself over time.  This approach is a plant3 specific 
baseline comparison, or intra-plant efficiency benchmark. The baseline approach has the 
advantage of controlling for some plant specific conditions that do not change during the 
comparison period.   

The next level of this ceteris paribus principle is an inter-plant comparison that may include 
a variety of factors that influence energy use, but may not be viewed as efficiency.  Factors may 
include difference in the types of product and materials used, as well as location specific 
conditions.  Intra-plant comparisons within an industry also get us closer to the notion of an 
observed best-practice benchmark of economic energy efficiency, since by definition there is 
some group of plants that are the best performers. This was the notion introduced by (Farrell 
1957) and has been the basis for measuring production efficiency in economics.  A modified 
approach has been adopted (Boyd 2005) and its evolution is discussed by (Boyd, Dutrow et al. 
2008).   

 
Intensity Metric Selection 

 
Intensity ratios provide a basic metric for measuring energy efficiency and performance 

compared to a baseline. To measure intensity you need a measure of energy and something for 
the denominator.  For the numerator these studies use total source energy, defined as the net Btu 
total of the fuels (Btu) and electricity (Kwh) with electricity converted to Btu based on the level 
of efficiency of the U.S. grid for delivered energy, i.e. including generation and transmission 
losses.  A net measure is needed for when energy is transferred off site, most commonly in the 
form of steam or electricity.   

The choice of the denominator is a major issue for measuring intensity.  Ideally the 
denominator should capture some measure production.   (Freeman, Niefer et al. 1997)  show that 
industry level trends in energy intensity based on value, both total and value added, can differ 
dramatically from those based on physical quantities. As Freeman et all have observed, there are 

                                                
3 Throughout the paper we will refer to the plant level as the unit of observation, but the concept may also 

apply to more aggregate levels like firms and industries, an sometimes to less aggregate levels like process units. 
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many challenges with creating efficiency benchmarks based on price indexes, cost and other 
value measurements.4    

Given issues with linking energy use with price indexes, these studies have focused on using 
metrics based on physical quantities.  For physical production to be meaningful it needs to be at a 
high level of industry specificity.  For example, the “Dairy” industry produces many products 
that cannot be aggregated, but “Fluid Milk” can. Therefore, within industries, it is necessary to 
differentiate between specific types for plants and manufacturing operations.  

Similarly, building energy use benchmarks commonly use physical size (ft2) as the main 
denominator for energy intensity benchmarks, but for most industrial facilities this isn’t 
appropriate.5  While commonly used for commercial buildings where energy use is primarily tied 
to plug loads, lighting and HVAC systems, energy intensity based on size (sq. ft) does not 
correspond well with manufacturing process energy uses.  While energy intensity ratios are 
commonly used for intra-plant level baseline comparisons in an industrial energy management 
setting, their value for developing inter-plant comparisons is limited. For inter-plant comparison, 
there are multiple factors that must be considered.  

 
Multi-Factor Benchmarks 
   
When making intra-plant comparisons, it necessary consider a variety of factors that do not 
neatly fit neatly under the denominator of an energy intensity ratio.  While all plants may make a 
common product, other differences can significantly affect energy intensity.   The difficulty with 
applying an industry level inter-plant benchmark is controlling for inter-plant difference other 
than production volume.  While the things that differ between plants are numerous, we have 
found a common thread across industries that the primary difference that have the most impact 
on energy fall into the following categories. 

	  
• Product mix 
• Process input choices (i.e. “make or buy” upstream integration) 
• Size - Physical or productive capacity and utilization rates 
• Climate (and other location specific factors) 

 
The choice of factors to include in the analysis depends upon the nature of the production 
process, the configuration of the industry (e.g. is upstream integration common or rare), the 
availability of data to represent these factor, and ultimately the outcome of the statistical tests for 
significance. In order to address these types of factors, these studies use a multivariate approach 
to normalization where multiple effects are simultaneously considered (Boyd and Tunnessen 
2007).  The next sections discussed the four basic categories of effects that are commonly 

                                                
4 As Freeman et all (2007) note, “For an industry producing a single, well-defined, homogeneous good, it is 
relatively easy to construct an accurate price index.  Most industries, however, produce many poorly-defined, 
heterogeneous goods. For a variety of reasons, the more diverse the slate of products produced by an industry, the 
more difficult it becomes to construct an accurate price index.  …the accuracy of industrial price indexes is of 
extreme importance to industrial energy analysts and policy makers who use value-based indicators of energy 
intensity.” 
5 The one exception is Pharmaceutical manufacturing where energy intensity is expressed as MMBTU/SQ FT. This 
metric was chosen largely because of the huge impact of HVAC systems in pharmaceutical manufacturing.  
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considered.  There is further elaboration on the way this is implemented the section on industry 
specific comparisons. 
 
Product Mix  

Not all plants produce exactly the same product.  In fact, many plants themselves produce 
multiple products.  The diversity between plants gives rise to a mix of derived demands for 
specific processes and energy services.  To the extent that the final product is the results of a 
series of energy using steps the energy use of the plant will depend on the level and mix of 
products produced.  Rather than specifying each process step individually, the approach used 
here is to identify those products that use significantly more (or less) energy and measure those 
energy requirements with a statistical comparison.   

One approach to controlling for product mix is to segment the industry into cohorts based on 
product categories.  This works best when there is no overlap between plants that produce the 
various basic products and there are sufficient numbers of plants to conduct the statistical 
comparison between those resulting groups.  This means each sub-group is effectively treated as 
a separate industry for evaluation proposes.  A good example is the glass industry where 
containers and flat glass are distinct industry segments.   

When such natural sub sectors do not exist and multiple products are produced within a plant, 
additional approaches are needed. The statistical approach is well suited to testing if a particular 
grouping of products is appropriate for benchmarking differences in energy. When industries 
produce a mix of products that differs across plants then the product mix (share of activity) of 
distinct products is needed.  This approach was first used in wet corn mills (Boyd 2008) and was 
later applied to other sectors.  

In the absence of meaningful data on discrete product classes an alternative is a continuous 
measure of product differentiation.  Price is often taken as a measure of quality difference.  To 
the extent that such quality difference arise for additional energy using processes then value of 
shipments may be an appropriate proxy for product mix.  Differences in value may not involve 
higher energy use, as in luxury cars or specialty beers, but may be the case in creating different 
types of glass bottles or more complex cast metal products.  Given available data the link 
between energy and value (price) can be treated as largely an empirical issue, but preferably with 
some underlying hypothesis about the industry in the case study.  Value of shipments might be 
used instead of a physical production variable or in conjunction with physical outputs. In the 
latter case the ratio of value to physical product is price and becomes an implicit variable in the 
analysis.  Other measures of energy related product differences are industry specific; as in the 
case of vehicle size in automobile assembly, 

 
Size  

Size and associated capacity utilization rates may directly impact energy use.  Size may 
impact specific engineering and managerial advantages to energy use.  If there is a substantial 
“fixed” level of energy use in the short run, the utilization rates may have a non-linear impact on 
energy intensity.  In order to include size (and utilization) as a normalizing factor a meaningful 
measure of size or capacity is needed.  It may be measured on an input basis, output basis, or 
physical size.  In some cases there may be advantages to larger scale of production, i.e. 
economies of scale.  If it is the case that a larger production capacity or larger physical plant size 
has less than proportionate requirements for energy consumption then there are economies of 
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scale with respect to energy use.  For example, in the cement industry the scale is quite 
important.  The larger size of the kiln (rather than several smaller kilns) has advantages in terms 
of energy use.  The analysis for this particular sector accounts for this.  

 
Process Inputs   

There are three ways that process inputs are important for benchmarking.  The first is that 
inputs like materials, labor, or production hours may be good proxy measures of overall 
production activity when measures of production output are not available or have specific 
shortcomings6.  The second is in the identification for upstream (vertical) integration, i.e. 
whether a plant makes an intermediate product or purchases some pre-processed input.  This is 
an important “boundary” issue for the energy footprint of a plant, even when two plants produce 
identical outputs.  The third way is a variation of the second, relating to material “quality.”   If 
there are alternative input choices that differ qualitatively and also with respect to energy use 
then input quality measures can be introduced into the benchmark.  

The first way process inputs can be helpful in developing a statistical benchmark of energy 
use is that inputs like materials, labor, or production hours may be good proxy measures of 
overall production activity when measures of production output are not available or have specific 
shortcomings. If a physical measure of output is not readily available and pricing makes the 
value of shipments a questionable measure of production then physical inputs can be a useful 
proxy.  For some industries the basic material input is so ubiquitous that it makes sense to view 
energy use per unit of basic input rather than (diverse) outputs.  Process inputs may also be 
useful in measuring utilization, either directly or indirectly.  Corn refining is a good example of 
this approach. The  industry uses a ubiquitous inputs, corn.  In some industries physical 
production data is not reported in the Census of Manufacturing but material flows are reported 
and can be used instead.  For example, sand, lime, soda ash, and cullet (scrap glass) are the 
primary inputs to glass manufacturing.   

The second way that process inputs are important for inter-plant benchmarking is when 
vertical integration is common in a sector but varies in degree from plant to plant.  Industries are 
categorized by the products they produce, but some sectors may face a “make or buy” decision in 
the way they organize production.  A plant may purchase an intermediate product or produce it at 
the plant as part of a vertically integrated plant.  For example, an auto assembly plant may stamp 
body panels or ship them in from a separate facility.  The energy use of these two facilities is not 
directly comparable.  The inter-plant benchmarking approach must account for those “make or 
buy” decisions in the specific plant configurations.  Examples range from food processing, where 
plant may make juice from concentrate or fresh fruit or paper mills which may purchase market 
pulp or recycled fibers. 

The third way that process inputs are important for inter-plant benchmarking is when 
differences in material quality may also be related to energy use.  For example, if the materials 
mix to produce a product directly impacts energy uses, then the statistical model can apply 
different weights to the materials mix in the same manner that it does with product mix.  In other 
words, product/process level differences in energy use can be inferred from the volume and types 
of materials used in production.  To be considered in the statistical normalization, they must be 
measured on a consistent plant-level basis across the industry.  For cement plants the hardness 

                                                
6 As discuss in Freeman, et al (1997) 
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and moisture content of the limestone is hypothesized to influence energy use, but no consistent 
data is available for this, leaving it the subject of future analysis if data can be collected. 

One ubiquitous input is labor.  Labor may be helpful in capturing the quasi-fixed nature of 
energy if there are production slow-downs or non-production periods of operation, but when both 
labor and energy are being used.  In this way labor captures a plant activity level that is related to 
energy use, even when product output is not being generated.  As an empirical issue the 
statistical significance, or lack thereof, of labor in the analysis can capture this potentially 
industry specific phenomenon.   

 
Climate  
There are many things under the control of a plant or energy manager, but one they cannot 
control is “the weather.”  In most manufacturing plants heating, ventilation and cooling (HVAC) 
contributes to energy demand and weather determines how much is required to maintain comfort.  
Since the approach used here is annual, seasonal variation does not enter into the analysis, but 
differences due to the location of a plant and annual variation from the locations norm will play a 
role.  The approach that has been taken for all sectors under study is to include heating and 
cooling degree days (HDD and CDD) into the analysis to determine how much these location 
driven differences in “weather” impact energy use.   

In principle all plants have some part of energy use that is HVAC related, but when the 
HVAC component of energy use is small relative to total plant consumption the statistical 
approach may not be able to measure the effect accurately enough to meet tests for reliability.  
For some sectors weather is a factor in the process, like auto assembly.  It a factor because of 
paint booths and climate control technology need for those systems. Pharmaceuticals 
manufacturing, where “clean room” production environment is common, is another good 
example.  The climate impact in this sector is only applicable to the “finish and fill” production 
stage.  The more energy intensive chemical preparation stage is not sensitive to climate. Even in 
industries where the HVAC component is not an obvious or large part of energy use there may 
be production process related effects that analysis needs to test for.  For example, processes that 
use chillers may be sensitive to CDD (summer) loading.  Process heat furnaces may be sensitive 
to cold outside air so HDD (winter) effects might be included in the model. 

 
Methodology 
 

These case studies do not share a single methodology, but the approaches can be 
characterized by whether 1) the analysis is linear (in either energy use or energy intensity) or log 
linear and 2) the assumption about the distribution of the error term. 

The underlying approach of these case studies is a regression model of the general form  
 

𝐸 = 𝑓 𝑌,𝑋;𝛽 + 𝜖 
 
Where E is the measure of energy, Y is either production or a vector of production related 

activities, X is a vector of plant characteristics, β is a parameter vector (the normalization factors) 
and ε is the measure of relative plant efficiency.  This is similar to studies of total factor 
productivity where the LHS is production, the RHS is a production function, and ε is the Solow 
residual. (Syverson 2011) provides a review of the productivity dispersion literature. (Boyd 
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2008) provides some of the theoretical connections between the function f(.), the energy factor 
requirements function, and the sub-vector distance function (see (Murillo-Zamorano 2004) for a 
review of the distance function approaches).  The error term is interpreted as a measure of 
relative energy efficiency.  The estimates of the distribution of the error term are used to reflect 
the relative spread of energy performance within a sector. 

One variation in the case studies is one imposing the relationship be homogeneous of 
degree one in a single production variable, y. 

 
𝐸 = 𝑦  (𝑓 𝑋;𝛽 + 𝜖), or rearranging to an intensity form  𝐸/𝑦 = 𝑓 𝑋;𝛽 + 𝜖 
 

This approach ignores many issues about the assumption of the distribution of the error term but 
simply posits the regression model in the intensity form. When the function f(.) is linear in X 
then this represents the linear methodology.  This approach may be appropriate if the activities 
represented by X are additively independent, e.g. in corn refining the moisture content of one of 
the primary by-products influences the energy use but has no impact on the energy use of other 
products.  

An alternative approach is the log-log methodology, where E and Y are in natural 
logarithms.  

 
ln  (𝐸) = (𝑓 ln 𝑌 ,𝑋;𝛽 + 𝜖) 

 
𝒍𝒏(𝑬) = 𝒂+ 𝒃𝒊𝒏

𝒊!𝟏 𝒍𝒏(𝒚𝒊)+ 𝒄𝒊𝒎
𝒊!𝟏 𝑿𝒊 + 𝜺	  	  	  

 
The error term is now interpreted as a percent efficiency, rather than absolute levels or 

intensities as in the linear approach. Whether this assumption of linearity is one of convenience 
or not, there are only two case studies that use the linear approach; all others use log linear.  One 
advantage of the log linear approach is that it provides an easy estimate of energy returns-to-
scale.  In other words the sum of the coefficients, b, of the activity vector, Y, is a measure of 
whether energy use scales proportionally to total activity.  If the sum of the coefficient are close 
to unity then larger plants do not have an “advantage” in terms of lower energy use.  If the sum is 
less than unity then larger plant use less than a proportional amount of energy.  If capacity is 
included in the Y vector then the case study provides both a short and long run estimate.  

The distributional assumptions for the error term can reflect whether the efficiency in the 
industry is approximately (log) normal of follows a skewed behavior.   All the case studies 
consider the possibility that efficiency is skewed and test the stochastic frontier energy model as 
in (Boyd 2008).  This assumes the error term is composed of two parts 

 
𝜀 = 𝑢 − 𝑣 

Where 
𝑣~𝑁 0,𝜎!!  

and energy (in)efficiency, u, is distributed according to some one-sided statistical distribution7, 
for example gamma, exponential, half normal, and truncated normal.   It is then possible to 

                                                
7 We also assume that the two types of errors are uncorrelated, i.e.σu,v = 0. 
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estimate the parameters of equation (2), along with the distribution parameters of u and v using 
maximum likelihood methods.   The approach that is used to estimate these parameters depends 
on the type of distribution that is used to represent inefficiency.  Exponential and truncated 
normal frontier models can be estimated using relatively conventional maximum likelihood 
(ML) techniques available in many modern statistical packages.  Gamma is a very flexible 
distribution, but also generates a model that is very difficult to estimate since there is no closed 
form for the likelihood function and a simulated maximum likelihood has been proposed.   A 
wide range of additional distributional assumptions regarding the heteroscedasticity of either u or 
v are also possible.  In addition, the treatment of panel data is a significant issue in the 
application of stochastic frontier, since the inefficiency term is likely to be correlated over time 
within a plant or firm.  (Greene 2002) presents an overview of panel treatments8.  If empirically 
there is no evidence of skewness of the error term then the ML estimate of 𝜎!! will be close to 
zero and the ML estimates are equivalent to OLS. 
 Since the distribution of the error term, composed or normal, is taken as a measure of 
efficiency dispersion heteroscedasticity takes on a specific interpretation beyond the usual 
concerns for parameter standard errors.  If the heteroscedasticity is related linearly to some 
variable in the X vector of the form 
  

𝜎!,! = 𝛾𝑋!,! 
or to production, Y 

𝜎!,! = 𝛾𝑌! 
or to the inverse of production 

𝜎!,! = 𝛾 1 𝑌! 
then the efficiency distribution and the associated quartiles depends on the size of X or Y.  In the 
last example the distribution of efficiency is larger for low production plants than for high 
production plants.   
  
 
Overview of selected case studies 

 
Drawing from the general approach above, Table 1 summarizes the factors that have been 

included in each of the industry case studies to explain difference in inter-plant energy use.  It is 
clear that each industry is unique in the characteristics that “matter” for energy benchmarking.  
Twenty of the studies use some type of physical units for activity; of those, 18 have 2 to 5 
different sub-product types or use some other information to further characterize product 
differences, i.e. price or size. Some measure of plant size and utilization is included in 5, but the 
small number is due more to data limitations, i.e. available plant level capacity information.  
Person or operation hours are included in 8 industries. In some cases the labor hours may be 
playing a similar role to utilization, i.e. capturing non-production activity that uses energy.  
About half of the sectors include process inputs, either as a ubiquitous measure of input, e.g. corn 
in corn refining or scrap in minimills, or in the form of raw vs. preprocessed inputs, e.g. fresh 
fruit vs concentrate in Juice production or virgin vs. recycled fiber in paper production.  The 

                                                
8 No case studies these panel treatments here since they only have, at most, a few years of data for any 

given plant in an unbalanced panel. 
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selection of inputs is based in part on data availability, but then only included when the estimated 
effect is of reasonable size and statistically significant. 

Table 2 further describes the statistical form of the models.  Seven sectors exhibit a 
skewed distribution of energy intensity and are modeled as stochastic frontiers; the rest are best 
approximated as log normal, i.e. the percentage difference from average performance are “bell 
shaped.”  Two of the log normal models exhibit heteroscedastic distributions with variance 
declining wrt production volumes.  The earliest year of data for a study is 2002.  This is largely 
driven by the data available when the analysis was conducted. 2007 is the most recently available 
data from Economic Census9.  Sectors that use industry or trade association provided data tend to 
have more recent benchmark years.  For the less energy intensive industries using Census of 
Manufacturing (CM) data, the energy content of the fuels is imputed using cost data and state 
level energy prices.  This is done since the sample sizes in the Manufacturing Energy 
Consumption Survey (MECS) are too small to meet disclosure requirements.  For industries with 
larger MECS samples the more detailed energy information is used directly. Sample sized vary 
depending on the industry, although these sample sizes should be viewed as a “fairly complete” 
count of all the plants in that sub-sector. Although some data is dropped due to missing variables 
from incomplete reporting or other data quality screens such as for extreme outliers. 

                                                
9 As of this draft the 2012 EC was not yet available in the RDC network 
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Table 1: ES-EPI Benchmarks Inputs, by Industry and Sub-Sector 
Focus industries Product mix Units Inputs Size or capacity External  Other 
Cement (V 2.0) 3 product types Tons - Capacity & # of Kilns Utilization Person hours 

Corn Refining (V 2.0) 5 product types Bushels Corn Capacity Utilization Feed moisture 
Dairy - Fluid Milk * 6 product types Gallons Whole milk - CDD Person hours 
Dairy - Ice cream * 4 product types Gallons 2 types - CDD Person hours 

Ethyl Alcohol ** Single Gallons - - - - 
Food - Juice (Canned) 4 x 2 product types Gallons 2 types - - - 

Food - Frozen Fried Potatoes Single pounds - - - Warehouse (frozen) 
Food - Tomato products ** 1 sub-product type  2 types - - Person hours 

Baking - Cookies & Crackers 3 product types pounds - - - - 
Baking - Bread & rolls * 5 Product types tons  Raw dough - Weather TBD  Freezers  

Glass – Flat - pounds Sand - - - 
Glass – Container Price pounds Sand, Cullet - - - 

Iron and Steel - Integrated * 
3 stages of 
production  tons - Furnace capacity Utilization - 

Iron and Steel – Minimills * Price tons Scrap Furnace capacity Utilization - 
Metal casting - Iron * 4 product types Tons, price - - HDD Person hours 

Metal casting - Investment steel * - hours - - - Person hours 
Metal casting - “Other” steel * 3 product types $ - - - - 

Metal casting – aluminum * 3 product types Tons, price - - HDD - 

Motor Vehicle - Assembly V2.0 vehicle size  of vehicles - - 
Weather, 

Utilization Air Tempering 

Pharmaceuticals 3 activity types * %  - Facility size (ft2) 
Weather, 

Utilization Operation hours 

       
Printing - Lithograph * 6 product types $ 2x3 types - Weather TBD - 

Pulp Mills 3 product types  tons 2 types - - Water treatment 

Paper & Board Integrated Mills 3 product types  tons 3 types - - 
Water treatment, 

bleaching chemicals 
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Focus industries Product mix Units Inputs Size or capacity External  Other 
Ready Mix Concrete * 2 activities Tons,miles - - - - 

*   Under Industry Review, ** Preliminary  
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Table 2: ES-EPI Benchmarks Model Details, by Industry and Sub-Sector 
Focus industries Model Year # of plants Data source  RTS 75 to 50th 

Cement (V 2.0) log normal (heteroscedatic) 2000-2008 96 1.0 

Variable SR 

0.92 LR -6.1% 

Corn Refining (V 2.0) half normal  frontier 2004-2009 37 Industry  

Variable SR 

Constant LR -14.5% 

Dairy - Fluid Milk * log normal 2002 258 CM 0.85 -29.0% 

Dairy - Ice cream * log normal 2002 89 CM 1.05 -23.9% 

Ethyl Alcohol ** log normal 2007 111 CM 0.70 -35.4 

Food - Juice (Canned) log normal 2002 44 CM 0.84 -41.8% 

Food - Frozen Fried Potatoes log normal 2002 27 CM 0.91 -16.0% 

Food - Tomato products ** log normal 2002 40 CM 1.11 -43.7% 

Baking - Cookies & Crackers log normal 2002 64 CM 0.71 -30.9% 

Baking - Bread & rolls * log normal  2007 207  CM 0.91 -28.8%  

Glass – Flat log half normal frontier 2002 38 CM, MECS Variable -16.3% 

Glass – Container log normal 2002 62 MECS 1.03 -11.6% 

Iron and Steel - Integrated * log exponential  frontier 2005-2009 12 

 

Industry 

0.72 SR 

0.99 LR 9.2% 

Iron and Steel – Minimills * log normal 2002 39 CM, MECS  -12.1% 

Metal casting - Iron * log normal 2006 83 CM, MECS 1.06 -23.2% 

Metal casting - Investment steel * log half normal frontier 2007 51 CM 1.03 -32.8% 

Metal casting - “Other” steel * log normal 2007  59 CM Variable -25.8% 

Metal casting – aluminum * Log normal (heteroscedatic) 2007 290 CM, MECS 1.05 -28.3% 

Motor Vehicle - Assembly V2.0 Gamma frontier 2003-2005 33 Industry  
Variable SR 
Constant LR -21.4% 

Pharmaceuticals log half normal frontier 2004-2006 61 Industry  
Variable SR 

0.98 LR -30.1% 

Printing - Lithograph * Log half normal 2007 775 CM 1.0 -35.0% 

Pulp Mills log normal 2002 28 CM, MECS 1.05 -36.1% 

Paper & Board Integrated Mills log normal 2002 99 CM, MECS 0.71 -19.5% 

Ready Mix Concrete * log normal 2008-2009 62 

NRMCA 0.83 SR 

0.89 LR -35.5% 
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*   Under Industry Review, ** Preliminary 
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The last column labeled 75 to 50th represents the third quartile range, i.e. percent 
difference of the 75th percentile, i.e. the ENERGY STAR certified plant level, and the average or 
median performance, the 50th percentile.  This ranges from as low as 6% to nearly 44%.  Figure 1 
compares this third quartile range to the industry average share of energy cost to value added.  
This cost share reflects how “important” energy is in the sector.  We see a clear correlation 
between high cost shares and the range of performance.  This makes sense since industries with 
higher relative energy costs would put more effort into management of those costs.  There are 
outliers in this relationship, however.   They include pulp mills and ethanol (dry mill) plants.  
The latter is a preliminary estimate.  The result for pulp mills may suggest the need for additional 
scrutiny.  However, the EPI uses net purchased energy and pulp mills provide a large amount of 
internally generated power from black liquor and CHP.  There may actually be a wide range of 
practices in terms of net purchased energy in this sector than for other energy intensive ones. 

 
Figure 1: Correlation between industry average energy share and 50-75 quartile range 

 
 

The second to the last column is the estimate of returns to scale wrt energy use.  Constant returns 
is the most common; only 8 studies suggest some economies of scale.  The studies that use linear 
forms impose constant returns in the long run and allow for variable returns in the short run. 
Some studies use a variable returns specification by including second order terms in the activity 
variables or a measure of capacity utilization, i.e. production/capacity, in the analysis. 
 
Updates for benchmark year for three ES-EPI 
 
In the 2010, first three completed case studies; Auto assembly, Cement, and Corn refining (see 
(Boyd 2005, Boyd 2006, Boyd 2008) for detailed descriptions of the earlier models) began to be 
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updated.  Comparing the old benchmark with the new benchmark reveals information about how 
these three, very different industries have changed over time.  Since the analysis reveals both the 
general level and range of energy performance the comparison focuses on how much the change 
in the “best practice” and the change in the range of performance contribute to the overall 
reduction in energy use in the sector (see  (Boyd and Zhang 2012), (Boyd and Delgado 2012), 
and (Boyd 2010)  for the details of the updates). 

For the cement industry, if one computes the ratio of total energy costs to total value of 
shipments (adjusted for inflation) in 1997 and 2007 from data collected in the Economic Census, 
one would conclude that this measure of energy intensity has fallen ~16%, from 0.184 to 
0.158.   Aggregate data may also give the impression that all plants have made the same steady 
improvements.  The picture that emerges from our plant level statistical analysis is somewhat 
different and more subtle (figure 2); poorer-performing plants from the late 1990s have made 
efficiency gains, reducing the gap between themselves and the top performers, whom have 
changed only slightly.  The results from this study focus on energy efficiency and controls for 
other structural changes in the industry, e.g., increases in average plant size, which also tend to 
lower energy use.  Our estimate of the overall energy efficiency improvement in the 96 plants in 
our database represents a 13% percent change in total source energy and the source of these 
changes is clearly not uniform. 
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Figure 2: Comparison of Two Benchmark Distributions of Energy Efficiency  

in Cement Manufacturing (source: Boyd and Zhang 2012) 

 
 
Results for the auto assembly industry are similar, but less dramatic (figure 3).  There are 

two sources of improvement, the changes in the industry energy frontier, i.e. “Best Practices” 
and technology, and the changes in efficiency, i.e. whether plants are catching up or falling 
behind.  The results suggest that slightly more than half of the improvement is changes in 
efficiency, which have slightly outpaced changes in the frontier.  The combined effect when 
evaluated against the over 7 million vehicles produced in 2005 by the plants in our study implies 
in a reduction of 11.6%, or 1462 million lbs of CO2, attributable to changes in observed industry 
energy efficiency practices. 
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Figure 3: Comparison of Two Benchmark Distributions of Energy Efficiency  

in Auto Assembly (Source: Boyd 2010) 

 
 

The change in the distribution of energy efficiency for a representative corn refining plant 
is shown in figure 4.  If we multiply this plant-specific change in energy intensity by the level of 
corn input production for each plant operating in the industry in 2009, and total across all plants, 
we compute a reduction of 6.7 trillion Btu in annual energy use.  Relative to an average annual 
total source energy consumption of 155 trillion Btu in 2009 for all the plants in our data set, this 
represents about a 4.3% reduction in overall energy use by this industry.  When energy-related 
greenhouse gas emissions are considered, this represents an annual reduction of 470 million kg 
of energy-related CO2 equivalent emissions from improved energy efficiency. The change in 
performance from these three industry are all quite different.  Cement reflects the case where 
best practice has changed very little, but “catching up” comprises the main source of 
improvements.  Corn refining is at the opposite end of this spectrum, where there are substantial 
changes in the best plants, but laggards remain or in some sense are even falling behind by 
failing to keep pace.  The auto assembly plants are a mixture of changes in best practice and 
some modest “catching up”.   These benchmark updates also reflect different time periods.  
When we compute the average annual change from the total reduction in energy use for each 
sector we see that the auto industry has made the greatest strides (see table 3). 

 
 
Figure 4: Comparison of Two Benchmark Distributions of Energy Efficiency  
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in Wet Corn Refining (source: Boyd and Delgado 2012) 

 
 
 

Table 3: ES-EPI Benchmarks Updates: Rate of change by Industry 

Sector 
New benchmark 

Year 
Old Benchmark 

Year 
Time 

period 
Total 

reduction 
Average annual 

change 
Auto 2005 2000 5 12.0% 2.3% 
Cement 2008 1997 11 13.0% 1.2% 
Corn 2009 1997 12 4.3% 0.4% 
 

Conclusions 
 

The objective of these case studies is for developing sector-specific energy performance 
benchmarks and to create a tool that would motivate companies to take actions to improve the 
energy efficiency of their plants and ultimately help reduce greenhouse gas emissions in the 
industrial sectors benchmarked.  As of December 2012, EPA had published 11 EPIs, awarded 
120 ENERGY STAR plant labels, and engaged an additional twelve industrial sectors and 
subsectors in the EPIs development process (see Table 3).  Compared to average plants (EPS 
score of 50) EPA estimated in 2011 that plants earning the ENERGY STAR have saved an 
estimated 314,190,357 MMBtus. 10Companies using the ES-EPI report that they find the tools 
valuable and beneficial for evaluating current performance and setting efficiency goals.   Many 
companies report they have incorporated the ES-EPI into their energy management programs and 
have made achieving ENERGY STAR certification as an objective.  
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Initially, there was industry skepticism that a whole-plant benchmark could be developed 
using statistical case studies.  Skeptics largely believed that each plant is too “unique” for whole 
plant comparisons to be made.  However, both the process and method used to develop the case 
studies has helped change skeptics participating in the industrial focus process into supporters.  
The process of engaging the industry in the development of the case studies has been critical.  By 
developing the case studies in a transparent, objective, and collaborative process, industry 
participants were directly involved in the design and review from the beginning.  This process 
enabled the identification of potential factors for inclusion in the regression analysis, receive 
timely feedback on draft results, quickly address concerns, and ultimately ensure a high degree 
of support and “buy-in” for the tool.  By using a benchmarking method based on actual 
operational data and that allowed for controls to address industry specific differences between 
plants, concerns were overcome that industrial plants are too heterogeneous, even within a 
specific sub-sector, to be able to benchmark. 

The availability of sector-wide energy and production data through the US Census 
Bureau was critical for the analysis.  One the greatest barrier to any benchmarking exercise is 
inadequate or unrepresentative data.  The case studies has benefited from the robust industrial 
energy and production data collected by the US Census through the Census of Manufacturing 
(CM) and the Manufacturing Energy Consumption Survey (MECS).  The availability of this data 
for use in developing the statistical models has been critical to ensuring the early success of the 
ENERGY STAR industrial benchmarking program.  First, it provided EPA with the ability to 
develop the benchmarks without having to undertake a data collection.  Second, by working with 
Census data, which has strict confidentially requirements, the ENERGY STAR team was able to 
build trust amongst industry participants that the company specific data used for benchmarking 
would be kept confidential and would not be shared with either focus participants and the EPA.  
While some of the more recent case studies have drawn on data provided by the industry, the 
availability and quality of the CM and MECS data enabled ENERGY STAR to successfully 
develop the first case studies and demonstrate that whole-plant energy performance 
benchmarking is possible.   

The process of developing EPIs has uncovered new insights into energy use and the 
drivers of efficiency within the sectors benchmarked.  Additionally, the establishment of industry 
baselines has enabled EPA to visualize the range of performance within a sector.  Visualizing the 
distribution of performance offers important information for policy makers and others interested 
in promoting efficiency or reducing GHG emissions from specific industrial sectors.  The slope 
of the baseline curve generated by the EPI can help policy makers and others evaluate what 
action is needed to improve the performance of the industry.  For example, sectors with steep 
baseline curves and distributions indicate that the opportunities for improving energy efficiency 
through existing measures may be limited.  These sectors should be considered for R&D 
investments to develop new technology that can create a step change in the level of performance.  
Additionally, these sectors may face greater difficulties reducing their GHG emissions through 
existing energy management measures.  Whereas sectors with flatter curves indicate that more 
opportunities are available through existing technologies and practices.  In these sectors, there is 
a greater distribution of performance, which usually suggests that existing energy management 
measures and investments can improve performance.  

The process of benchmarking and re-benchmarking a sector provides further insights into 
the improvement potential of the industry over time.  Understanding how the distribution of 
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energy performance in a sector is changing or not changing can provide valuable information for 
policy makers as well as business leader in developing strategies to drive future performance 
gains.  

The approach and method used by ENERGY STAR to benchmark whole-plant energy 
performance has potential applicability to other sustainability metrics, such as water and waste, 
as well as sub-systems within plants.  While developing such benchmarks is beyond the scope of 
the ENERGY STAR program, several companies participating in the Industrial Focus process 
have recently initiated an independent effort that applies the ENERGY STAR benchmarking 
approach to process lines within the plant and to non-energy measures such as water.  If 
successful, the results of this effort will break new ground in advancing the field of energy 
performance and sustainability benchmarking. 

 
 

Table 3: Status of Case Studies (published or under review) 
Focus industries Status 

Cement (V 2.0) (Boyd and Zhang 2012) 
Corn Refining (V 2.0)  (Boyd and Delgado 2012)   

Dairy - Fluid Milk  Under industry review 
Dairy - Ice cream  Under industry review 

Ethyl Alcohol  Under industry review 
Food - Juice (Canned) (Boyd 2011) 

Food - Frozen Fried Potatoes (Boyd 2011) 
Food - Tomato products  (Boyd 2011) 

Baking - Cookies & Crackers (Boyd 2011) 
Baking - Bread & rolls  Under industry review 

Glass – Flat (Boyd 2009) 
Glass - Container (Boyd 2009) 

Iron and Steel - Integrated  Under industry review 
Iron and Steel – Minimills  Under industry review 

Metal casting - Iron  Under industry review 

Metal casting - Investment steel  Under industry review 
Metal casting - “Other” steel  Under industry review 

Metal casting - Aluminum  Under industry review 

Motor Vehicle - Assembly (V2.0) (Boyd 2014) 

Pharmaceuticals (Boyd 2009) 
Printing - Lithograph  Under industry review 

Pulp Mills (Boyd and Guo 2012) 
Paper & Board Integrated Mills (Boyd and Guo 2014) 

Ready Mix Concrete  Under industry review 
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